Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis.

Zhengang Ma, Chunfeng Li, Guoqing Pan, Zhihong Li, Bing Han, Jinshan Xu, Xiqian Lan, Jie Chen, Donglin Yang, Quanmei Chen, Qi Sang, Xiaocun Ji, Tian Li, Mengxian Long, Zeyang Zhou
Author Information
  1. Zhengang Ma: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  2. Chunfeng Li: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  3. Guoqing Pan: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  4. Zhihong Li: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  5. Bing Han: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  6. Jinshan Xu: College of Life Sciences, Chongqing Normal University, Chongqing, China.
  7. Xiqian Lan: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
  8. Jie Chen: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  9. Donglin Yang: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  10. Quanmei Chen: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  11. Qi Sang: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  12. Xiaocun Ji: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  13. Tian Li: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  14. Mengxian Long: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
  15. Zeyang Zhou: The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China ; College of Life Sciences, Chongqing Normal University, Chongqing, China ; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.

Abstract

Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for further work on host-parasite interaction between insects and microsporidia.

References

  1. Cell. 2002 Apr;109 Suppl:S121-31 [PMID: 11983158]
  2. J Cell Biol. 1982 Jun;93(3):970-5 [PMID: 6811603]
  3. J Infect Dis. 2003 Jun 15;187 Suppl 2:S327-34 [PMID: 12792847]
  4. Int J Parasitol. 2009 Mar;39(4):391-8 [PMID: 18854188]
  5. Insect Biochem Mol Biol. 2008 Dec;38(12):1087-110 [PMID: 18835443]
  6. Pigment Cell Res. 1993 Jun;6(3):117-26 [PMID: 8234196]
  7. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  8. Microbes Infect. 2001 Apr;3(5):373-9 [PMID: 11369274]
  9. Blood. 2008 Feb 15;111(4):2062-72 [PMID: 18003888]
  10. J Mol Biol. 1996 May 24;258(5):778-88 [PMID: 8637009]
  11. Mol Biochem Parasitol. 2010 Dec;174(2):117-27 [PMID: 20817048]
  12. Science. 2002 Apr 26;296(5568):733-5 [PMID: 11976454]
  13. Vet Immunol Immunopathol. 2009 Aug 15;130(3-4):141-62 [PMID: 19261335]
  14. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6275-9 [PMID: 8327509]
  15. PLoS One. 2011 Mar 29;6(3):e18109 [PMID: 21479226]
  16. Cell Microbiol. 2007 Jan;9(1):106-19 [PMID: 16879453]
  17. Mol Genet Genomics. 2002 Jun;267(4):506-14 [PMID: 12111558]
  18. Infect Immun. 2010 Mar;78(3):1040-8 [PMID: 20038534]
  19. Biosci Biotechnol Biochem. 2002 Jul;66(7):1488-94 [PMID: 12224632]
  20. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  21. J Invertebr Pathol. 2008 Oct;99(2):235-8 [PMID: 18640121]
  22. Eukaryot Cell. 2012 Feb;11(2):229-37 [PMID: 22140229]
  23. Insect Mol Biol. 2009 Aug;18(4):517-30 [PMID: 19604311]
  24. J Invertebr Pathol. 2013 Feb;112(2):166-74 [PMID: 23178826]
  25. Infect Immun. 2010 Jun;78(6):2745-53 [PMID: 20308291]
  26. Biologicals. 2003 Jun;31(2):97-102 [PMID: 12770538]
  27. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329-44 [PMID: 10426426]
  28. Insect Biochem Mol Biol. 2002 Oct;32(10):1295-309 [PMID: 12225920]
  29. J Exp Biol. 2008 Aug;211(Pt 16):2712-24 [PMID: 18689425]
  30. Insect Biochem Mol Biol. 2005 Feb;35(2):153-64 [PMID: 15681225]
  31. Parazitologiia. 2003 Sep-Oct;37(5):428-35 [PMID: 14658314]
  32. J Invertebr Pathol. 1998 Mar;71(2):97-105 [PMID: 9547137]
  33. Science. 2004 Dec 10;306(5703):1937-40 [PMID: 15591204]
  34. Arch Insect Biochem Physiol. 2008 Feb;67(2):97-106 [PMID: 18076110]
  35. Dev Comp Immunol. 2009 Jun;33(6):789-800 [PMID: 19201380]
  36. J Biol Chem. 1995 Dec 15;270(50):29923-7 [PMID: 8530391]
  37. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11986-91 [PMID: 14530389]
  38. Nucleic Acids Res. 2002 Feb 15;30(4):e15 [PMID: 11842121]
  39. Virus Genes. 2006 Dec;33(3):351-7 [PMID: 16991007]
  40. Immunol Rev. 2004 Apr;198:72-82 [PMID: 15199955]
  41. Infect Immun. 2006 Jan;74(1):239-47 [PMID: 16368977]
  42. PLoS One. 2012;7(5):e37017 [PMID: 22623972]
  43. Insect Biochem Mol Biol. 2011 Sep;41(9):696-706 [PMID: 21624461]
  44. Bioessays. 2001 Dec;23(12):1138-47 [PMID: 11746233]
  45. PLoS One. 2009 Aug 04;4(8):e6494 [PMID: 19701481]
  46. Res Immunol. 1990 Nov-Dec;141(9):908-10 [PMID: 2129210]
  47. Arch Immunol Ther Exp (Warsz). 1997;45(2-3):149-55 [PMID: 9597080]
  48. Antivir Chem Chemother. 2004 Nov;15(6):287-97 [PMID: 15646642]
  49. J Eukaryot Microbiol. 1997 Mar-Apr;44(2):109-16 [PMID: 9190262]
  50. Genome Biol. 2007;8(8):R162 [PMID: 17683582]
  51. EMBO Rep. 2004 Feb;5(2):207-12 [PMID: 14749722]
  52. J Insect Physiol. 2012 Aug;58(8):1090-5 [PMID: 22609362]
  53. Adv Parasitol. 1998;40:283-320 [PMID: 9554077]
  54. J Immunol. 1984 Mar;132(3):1067-70 [PMID: 6363533]
  55. J Mol Cell Biol. 2010 Oct;2(5):255-63 [PMID: 20729248]
  56. Int J Parasitol. 2005 Aug;35(9):941-53 [PMID: 16005007]
  57. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 [PMID: 11309499]
  58. Proc Biol Sci. 2003 Nov 7;270 Suppl 2:S220-2 [PMID: 14667388]
  59. Dev Comp Immunol. 2007;31(10):1002-12 [PMID: 17337053]
  60. Genome Biol. 2006;7(5):216 [PMID: 16737556]
  61. Plant Physiol. 2001 Oct;127(2):584-93 [PMID: 11598232]
  62. Arch Immunol Ther Exp (Warsz). 2001;49(5):361-5 [PMID: 11798134]
  63. PLoS One. 2009 Dec 01;4(12):e8098 [PMID: 19956592]
  64. J Immunol. 2006 Oct 1;177(7):4594-604 [PMID: 16982897]
  65. BMC Genomics. 2013 Mar 16;14:186 [PMID: 23496955]

MeSH Term

Animals
Bombyx
Gene Expression Profiling
Genomics
Immunity, Cellular
Immunity, Humoral
Juvenile Hormones
Melanins
Monophenol Monooxygenase
Mycoses
Nosema
Oligonucleotide Array Sequence Analysis
Species Specificity
Spores
Time Factors
Transcription, Genetic

Chemicals

Juvenile Hormones
Melanins
Monophenol Monooxygenase

Word Cloud

Created with Highcharts 10.0.0bombycisNresponsesilkwormmicrosporidiainfectionmoriNosemahostgenesinducedpathwaysmayincludingstudyBombyx1involvedmetabolismBup-regulationimmunefactorssuggestedanalysisindicatedantimicrobialdefensemechanismshost-parasiteinteractionMicrosporidiaattractedmuchattentioninfectvarietyspeciesrangingprotistsmammalsimmunocompromisedpatientsAIDScancerAsideceranaeworksfocusedelucidatingmechanismpathogenpébrinecausesgreateconomiclossesindustryDetailedunderstandinghelpfulpreventiondiseasegenome-widesurveygeneexpressionprofile2468dayspost-infectionperformedresultsshowed64244328887respectively124basalmodulatedNotablyplayrolejuvenilehormonesynthesissuggestingaccumulateJHInterestinglycaninhibitserineproteasecascademelanizationpathwayhemolymphduesecretionserpinsalsoseveralcellularCTL11sporerecognitionsignaltransductionMicroarrayreal-timePCRactivationTollJAK/STATnotablepeptidesgloverinslebocinsmoricinsstronglypeptidetriggeredresistinvasivebombycis-specificimportantrolesanti-microsporidiaOverallprimarilyprovidesinsightpotentialmolecularprovidefoundationworkinsectsGenome-widetranscriptionalmicrosporidian

Similar Articles

Cited By