Ecological and genetic determinants of Pepino Mosaic Virus emergence.

Manuel G Moreno-Pérez, Israel Pagán, Liliana Aragón-Caballero, Fátima Cáceres, Aurora Fraile, Fernando García-Arenal
Author Information
  1. Manuel G Moreno-Pérez: Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain.

Abstract

Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino Mosaic Virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natural populations of wild tomatoes in southern Peru for PepMV infection. PepMV incidence, genetic variation, population structure, and accumulation in various hosts were analyzed. PepMV incidence in wild tomatoes was high, and a strain not yet reported in domestic tomato was characterized. This strain had a wide host range within the Solanaceae, multiplying efficiently in most assayed Solanum species and being adapted to wild tomato hosts. Conversely, PepMV isolates from tomato crops showed evidence of adaptation to domestic tomato, possibly traded against adaptation to wild tomatoes. Phylogenetic reconstructions indicated that the most probable ancestral sequence came from a wild Solanum species. A high incidence of PepMV in wild tomato relatives would favor virus spread to crops and its efficient multiplication in different Solanum species, including tomato, allowing its establishment as an epidemic pathogen. Later, adaptation to tomato, traded off against adaptation to other Solanum species, would isolate tomato populations from those in other hosts.
IMPORTANCE: Virus emergence is a complex phenomenon involving multiple ecological and genetic factors and is considered to involve three phases: virus encounter with the new host, virus adaptation to the new host, and changes in the epidemiological dynamics. We analyze here if this was the case in the recent emergence of Pepino Mosaic Virus (PepMV) in tomato crops worldwide. We characterized a new strain of PepMV infecting wild tomato populations in Peru. Comparison of this strain with PepMV isolates from tomato crops, plus phylogenetic reconstructions, supports a scenario in which PepMV would have spread to crops from wild tomato relatives, followed by adaptation to the new host and eventually leading to population isolation. Our data, which derive from the analysis of field isolates rather than from experimental evolution approaches, significantly contribute to understanding of plant virus emergence, which is necessary for its anticipation and prevention.

References

  1. Plant Dis. 2001 Oct;85(10):1121 [PMID: 30823296]
  2. Plant Dis. 2007 Oct;91(10):1250-1254 [PMID: 30780522]
  3. Plant Dis. 2008 Nov;92(11):1590 [PMID: 30764462]
  4. Open Virol J. 2009 Mar 19;3:1-6 [PMID: 19572052]
  5. Arch Virol. 2002 Nov;147(11):2231-8 [PMID: 12417957]
  6. Mol Biol Evol. 2008 Jul;25(7):1253-6 [PMID: 18397919]
  7. Adv Virus Res. 2012;84:505-32 [PMID: 22682177]
  8. Ann Bot. 2007 Nov;100(5):925-40 [PMID: 17766847]
  9. Acta Biochim Pol. 2010;57(3):385-8 [PMID: 20725647]
  10. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  11. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  12. J Virol. 2002 Dec;76(23):12320-4 [PMID: 12414972]
  13. Mol Plant Microbe Interact. 2011 Mar;24(3):287-93 [PMID: 21294624]
  14. Science. 2003 Dec 19;302(5653):2074-5 [PMID: 14684807]
  15. Virol J. 2013 Apr 12;10:117 [PMID: 23587202]
  16. Plant Dis. 2000 Jan;84(1):103 [PMID: 30841211]
  17. J Gen Virol. 2007 Oct;88(Pt 10):2839-2845 [PMID: 17872538]
  18. Arch Virol. 2002 Oct;147(10):2009-15 [PMID: 12376761]
  19. Adv Virus Res. 1979;25:169-90 [PMID: 393096]
  20. Virus Res. 2009 May;141(2):113-30 [PMID: 19159652]
  21. Arch Virol. 2005 Mar;150(3):619-27 [PMID: 15592891]
  22. Arch Virol. 2009;154(5):853-6 [PMID: 19333548]
  23. Arch Virol. 2001 Dec;146(12):2455-60 [PMID: 11811692]
  24. PLoS Genet. 2011 Nov;7(11):e1002378 [PMID: 22125497]
  25. Mol Plant Pathol. 2010 Mar;11(2):179-89 [PMID: 20447268]
  26. Virus Genes. 2007 Jan;34(1):1-8 [PMID: 16927118]
  27. Arch Virol. 2005 Jun;150(6):1187-201 [PMID: 15750864]
  28. Phytopathology. 2005 Jul;95(7):827-33 [PMID: 18943016]
  29. BMC Evol Biol. 2007 Nov 08;7:214 [PMID: 17996036]
  30. Am Nat. 2004 Nov;164 Suppl 5:S79-89 [PMID: 15540144]
  31. Trends Ecol Evol. 2005 May;20(5):238-44 [PMID: 16701375]
  32. Bioinformatics. 2010 Oct 1;26(19):2462-3 [PMID: 20798170]
  33. Mol Biol Evol. 2007 Oct;24(10):2310-22 [PMID: 17675653]
  34. Ecol Lett. 2010 Oct;13(10):1221-32 [PMID: 20618842]
  35. Phytopathology. 2006 Mar;96(3):274-9 [PMID: 18944442]
  36. Plant Dis. 2008 Dec;92(12):1683-1688 [PMID: 30764290]
  37. Mol Biol Evol. 2002 May;19(5):708-17 [PMID: 11961104]
  38. Trends Ecol Evol. 2004 Oct;19(10):535-44 [PMID: 16701319]
  39. Mol Plant Pathol. 2013 Dec;14(9):923-33 [PMID: 23855964]
  40. Adv Virus Res. 2006;67:1-47 [PMID: 17027676]
  41. PLoS One. 2008 Jun 11;3(6):e2397 [PMID: 18545680]
  42. J Virol. 2009 Dec;83(23):12378-87 [PMID: 19759144]
  43. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]

MeSH Term

Base Sequence
Capsid Proteins
Ecology
Genetic Variation
Solanum lycopersicum
Molecular Sequence Data
Peru
Phylogeny
Plant Diseases
Potexvirus

Chemicals

Capsid Proteins

Word Cloud

Created with Highcharts 10.0.0tomatowildPepMVhostadaptationemergencenewVirusspeciescropsspreadstrainSolanumvirusPepinoMosaicpopulationstomatoesincidencegenetichostsisolatescomplexphenomenonfollowedpathogenworldwideplantPerupopulationhighdomesticcharacterizedtradedreconstructionsrelativesgenerallyinvolvesAlthoughvirusesaccountlargestfractionemergingcroppathogensknowledgeincompleteaddressquestionwhethermajorinvolvedcultivatedsurveyednaturalsoutherninfectionvariationstructureaccumulationvariousanalyzedyetreportedwiderangewithinSolanaceaemultiplyingefficientlyassayedadaptedConverselyshowedevidencepossiblyPhylogeneticindicatedprobableancestralsequencecamefavorefficientmultiplicationdifferentincludingallowingestablishmentepidemicLaterisolateIMPORTANCE:involvingmultipleecologicalfactorsconsideredinvolvethreephases:encounterchangesepidemiologicaldynamicsanalyzecaserecentinfectingComparisonplusphylogeneticsupportsscenarioeventuallyleadingisolationdataderiveanalysisfieldratherexperimentalevolutionapproachessignificantlycontributeunderstandingnecessaryanticipationpreventionEcologicaldeterminants

Similar Articles

Cited By (18)