Energy expenditure and substrate oxidation during and after eccentric cycling.

Luis Peñailillo, Anthony Blazevich, Kazunori Nosaka
Author Information
  1. Luis Peñailillo: Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, WA, Australia, lpenailillo@uft.cl.

Abstract

PURPOSE: This study compared concentric cycling (CONC) and two bouts of eccentric cycling (ECC1, ECC2) for substrate utilisation and resting energy expenditure (REE).
METHODS: Ten men (28 ± 8 years) performed each cycling bout for 30 min at 60 % of maximal concentric power output, with 2 weeks between bouts. Fat and carbohydrate (CHO) utilisation were assessed during and after cycling, and REE was measured before and 2 days after CONC, and before, 2 and 4 days after ECC1 and ECC2, using indirect calorimetry. An oral glucose tolerance test was performed before and 1 day after CONC, and before and 1 and 3 days after ECC1 and ECC2, and both peak and area-under-the-curve (AUC) of the glucose concentration were compared between bouts.
RESULTS: Energy expenditure and CHO utilisation during cycling were 36 and 42 % less in ECC1, and 40 and 52 % less in ECC2, than CONC (P < 0.05). Fat utilisation was greater during ECC1 (72 %) and ECC2 (85 %) than CONC, and 48 % greater during ECC2 than ECC1 (P < 0.05). Post-exercise energy expenditure and fat utilisation were less for ECC1 than CONC (30 and 52 %, respectively), but similar between CONC and ECC2. REE did not change from baseline after any bouts. Peak and AUC glucose concentration decreased 3 days after ECC1, but no changes were evident after CONC or ECC2.
CONCLUSION: These results show greater fat utilisation during eccentric than concentric cycling at the same workload, and greater fat oxidation during and after secondary eccentric cycling bout without glucose uptake impairment.

References

  1. Eur J Appl Physiol Occup Physiol. 1993;67(5):420-5 [PMID: 8299613]
  2. J Am Coll Nutr. 1997 Apr;16(2):140-6 [PMID: 9100214]
  3. J Physiol. 1952 Jul;117(3):380-90 [PMID: 14946742]
  4. J Appl Physiol (1985). 1998 Aug;85(2):695-700 [PMID: 9688748]
  5. Eur Respir J. 2008 Jan;31(1):204-12 [PMID: 18166598]
  6. Int J Sports Med. 2005 Feb;26 Suppl 1:S28-37 [PMID: 15702454]
  7. Eur J Appl Physiol. 2002 Mar;86(5):411-7 [PMID: 11882927]
  8. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):784-8 [PMID: 7130003]
  9. J Physiol. 1995 Feb 1;482 ( Pt 3):705-12 [PMID: 7738859]
  10. Am J Clin Nutr. 1990 Feb;51(2):147-52 [PMID: 2305701]
  11. Eur J Appl Physiol. 2004 Aug;92(4-5):393-8 [PMID: 15205961]
  12. Int J Sports Med. 1998 Jul;19(5):293-302 [PMID: 9721051]
  13. Med Sci Sports Exerc. 1989 Oct;21(5):581-5 [PMID: 2691819]
  14. Am J Physiol. 1990 Nov;259(5 Pt 1):E650-7 [PMID: 2240203]
  15. Int J Sports Physiol Perform. 2013 Mar;8(2):111-22 [PMID: 23428482]
  16. Med Sci Sports Exerc. 1995 Sep;27(9):1263-9 [PMID: 8531624]
  17. Med Sci Sports Exerc. 2011 Dec;43(12):2281-96 [PMID: 21606878]
  18. Int J Sport Nutr Exerc Metab. 2010 Jun;20(3):181-90 [PMID: 20601735]
  19. J Womens Health (Larchmt). 2009 Feb;18(2):253-60 [PMID: 19183097]
  20. J Appl Physiol (1985). 1991 Aug;71(2):674-9 [PMID: 1938741]
  21. J Am Diet Assoc. 2006 Jun;106(6):881-903 [PMID: 16720129]
  22. J Appl Physiol (1985). 2005 Jan;98(1):160-7 [PMID: 15333616]
  23. Scand J Med Sci Sports. 2006 Jun;16(3):209-14 [PMID: 16643200]
  24. J Appl Physiol (1985). 2001 Nov;91(5):2135-42 [PMID: 11641354]
  25. Am J Clin Nutr. 1987 Jun;45(6):1420-3 [PMID: 3591720]
  26. Eur J Appl Physiol. 2010 Jan;108(2):383-91 [PMID: 19820961]
  27. Med Sci Sports Exerc. 2000 Jul;32(7):1202-7 [PMID: 10912882]
  28. J Physiol. 1949 Aug;109(1-2):1-9 [PMID: 15394301]
  29. J Gerontol A Biol Sci Med Sci. 2003 May;58(5):M419-24 [PMID: 12730250]
  30. Med Sci Sports Exerc. 2001 Jun;33(6):932-8 [PMID: 11404658]
  31. Scand J Med Sci Sports. 2010 Feb;20(1):e103-11 [PMID: 19422638]
  32. Med Sci Sports Exerc. 2011 Jan;43(1):64-73 [PMID: 20508540]
  33. J Appl Physiol (1985). 2003 Feb;94(2):716-23 [PMID: 12433853]
  34. Scand J Med Sci Sports. 2003 Apr;13(2):88-97 [PMID: 12641640]
  35. Eur J Clin Invest. 2008 Apr;38(4):218-26 [PMID: 18339002]
  36. J Appl Physiol (1985). 1992 Jun;72(6):2197-202 [PMID: 1629073]
  37. J Am Diet Assoc. 2009 Jan;109(1):128-32 [PMID: 19103333]
  38. Eur J Appl Physiol. 2011 Mar;111(3):477-84 [PMID: 20886227]
  39. Acta Physiol Scand. 2001 Mar;171(3):311-9 [PMID: 11412143]
  40. Am J Physiol Regul Integr Comp Physiol. 2000 May;278(5):R1282-8 [PMID: 10801298]
  41. Med Sci Sports Exerc. 2007 Aug;39(8):1423-34 [PMID: 17762377]
  42. Int J Obes (Lond). 2005 Aug;29(8):966-74 [PMID: 15917846]
  43. Med Sci Sports Exerc. 2013 Sep;45(9):1773-81 [PMID: 23475167]
  44. Scand J Med Sci Sports. 2013 Oct;23(5):556-67 [PMID: 22288788]

MeSH Term

Adult
Carbohydrate Metabolism
Energy Metabolism
Exercise
Humans
Lipid Metabolism
Male

Word Cloud

Created with Highcharts 10.0.0cyclingCONCECC1ECC2%utilisationboutseccentricexpendituredaysglucosegreaterconcentricREE2lessfatcomparedsubstrateenergyperformedbout30FatCHO13AUCconcentrationEnergy52P<005oxidationPURPOSE:studytworestingMETHODS:Tenmen28±8yearsmin60maximalpoweroutputweekscarbohydrateassessedmeasured4usingindirectcalorimetryoraltolerancetestdaypeakarea-under-the-curveRESULTS:364240728548Post-exerciserespectivelysimilarchangebaselinePeakdecreasedchangesevidentCONCLUSION:resultsshowworkloadsecondarywithoutuptakeimpairment

Similar Articles

Cited By (14)