HRES-1/Rab4 promotes the formation of LC3(+) autophagosomes and the accumulation of mitochondria during autophagy.

Gergely Talaber, Gabriella Miklossy, Zachary Oaks, Yuxin Liu, Sharon A Tooze, Dmitriy M Chudakov, Katalin Banki, Andras Perl
Author Information
  1. Gergely Talaber: Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.
  2. Gabriella Miklossy: Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.
  3. Zachary Oaks: Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America ; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.
  4. Yuxin Liu: Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.
  5. Sharon A Tooze: Cancer Research UK London Research Institute, London, England, United Kingdom.
  6. Dmitriy M Chudakov: Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia.
  7. Katalin Banki: Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.
  8. Andras Perl: Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America ; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America ; Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.

Abstract

HRES-1/Rab4 is a small GTPase that regulates endocytic recycling. It has been colocalized to mitochondria and the mechanistic target of rapamycin (mTOR), a suppressor of autophagy. Since the autophagosomal membrane component microtubule-associated protein light chain 3 (LC3) is derived from mitochondria, we investigated the impact of HRES-1/Rab4 on the formation of LC3(+) autophagosomes, their colocalization with HRES-1/Rab4 and mitochondria, and the retention of mitochondria during autophagy induced by starvation and rapamycin. HRES-1/Rab4 exhibited minimal baseline colocalization with LC3, which was enhanced 22-fold upon starvation or 6-fold upon rapamycin treatment. Colocalization of HRES-1/Rab4 with mitochondria was increased >2-fold by starvation or rapamycin. HRES-1/Rab4 overexpression promoted the colocalization of mitochondria with LC3 upon starvation or rapamycin treatment. A dominant-negative mutant, HRES-1/Rab4(S27N) had reduced colocalization with LC3 and mitochondria upon starvation but not rapamycin treatment. A constitutively active mutant, HRES-1/Rab4(Q72L) showed diminished colocalization with LC3 but promoted the partitioning of mitochondria with LC3 upon starvation or rapamycin treatment. Phosphorylation-resistant mutant HRES-1/Rab4(S204Q) showed diminished colocalization with LC3 but increased partitioning to mitochondria. A newly discovered C-terminally truncated native isoform, HRES-1/Rab4(1-121), showed enhanced localization to LC3 and mitochondria without starvation or rapamycin treatment. HRES-1/Rab4(1-121) increased the formation of LC3(+) autophagosomes in resting cells, while other isoforms promoted autophagosome formation upon starvation. HRES-1/Rab4, HRES-1/Rab4(1-121), HRES-1/Rab4(Q72L) and HRES-1/Rab4(S204Q) promoted the accumulation of mitochondria during starvation. The specificity of HRES-1/Rab4-mediated mitochondrial accumulation is indicated by its abrogation by dominant-negative HRES-1/Rab4(S27N) mutation. The formation of interconnected mitochondrial tubular networks was markedly enhanced by HRES-1/Rab4(Q72L) upon starvation, which may contribute to the retention of mitochondria during autophagy. The present study thus indicates that HRES-1/Rab4 regulates autophagy through promoting the formation of LC3(+) autophagosomes and the preservation of mitochondria.

References

  1. Cell Mol Life Sci. 2011 Mar;68(5):903-17 [PMID: 20820851]
  2. J Cell Biol. 2008 Aug 25;182(4):685-701 [PMID: 18725538]
  3. Toxicol Appl Pharmacol. 2012 Feb 15;259(1):1-12 [PMID: 22198553]
  4. Biosci Rep. 2012 Dec;32(6):587-95 [PMID: 22943412]
  5. Autophagy. 2012 Nov;8(11):1682-3 [PMID: 22874560]
  6. J Cell Sci. 2004 Sep 15;117(Pt 20):4837-48 [PMID: 15340014]
  7. J Biol Chem. 2006 Nov 10;281(45):34574-91 [PMID: 16935861]
  8. J Biol Chem. 2010 Jan 8;285(2):1371-83 [PMID: 19910472]
  9. J Cell Biol. 2012 May 28;197(5):659-75 [PMID: 22613832]
  10. Exp Neurol. 2012 Nov;238(1):22-8 [PMID: 21095248]
  11. Ann Rheum Dis. 2014 Oct;73(10):1888-97 [PMID: 23897774]
  12. Annu Rev Biochem. 2011;80:125-56 [PMID: 21548784]
  13. FASEB J. 2012 Nov;26(11):4722-32 [PMID: 22835828]
  14. J Immunol. 2013 Sep 1;191(5):2236-46 [PMID: 23913957]
  15. Arthritis Rheum. 2006 Sep;54(9):2983-8 [PMID: 16947529]
  16. J Cell Sci. 2006 Apr 1;119(Pt 7):1297-306 [PMID: 16522682]
  17. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5 [PMID: 21646527]
  18. Arthritis Rheum. 2012 Sep;64(9):2937-46 [PMID: 22549432]
  19. IUBMB Life. 2010 Jul;62(7):503-8 [PMID: 20552641]
  20. PLoS One. 2010 Mar 22;5(3):e9805 [PMID: 20339559]
  21. Cell. 2010 May 14;141(4):656-67 [PMID: 20478256]
  22. Am J Physiol Regul Integr Comp Physiol. 2013 Oct 15;305(8):R927-38 [PMID: 23904108]
  23. Mol Cell. 2010 Oct 22;40(2):310-22 [PMID: 20965424]
  24. J Cell Sci. 2004 Jun 1;117(Pt 13):2687-97 [PMID: 15138286]
  25. Cell. 1992 Sep 4;70(5):729-40 [PMID: 1516131]
  26. J Immunol. 2009 Feb 15;182(4):2063-73 [PMID: 19201859]
  27. Autophagy. 2008 Oct;4(7):849-50 [PMID: 18758232]
  28. Nat Rev Rheumatol. 2013 Nov;9(11):674-86 [PMID: 24100461]
  29. Antioxid Redox Signal. 2012 Sep 1;17(5):794-802 [PMID: 22077334]
  30. Cell Death Differ. 2010 Nov;17(11):1707-16 [PMID: 20431599]
  31. Nature. 2008 Feb 28;451(7182):1069-75 [PMID: 18305538]
  32. Science. 2008 Jun 13;320(5882):1496-501 [PMID: 18497260]
  33. PLoS One. 2012;7(4):e35493 [PMID: 22536393]
  34. J Exp Med. 1998 Nov 16;188(10):1769-74 [PMID: 9815254]
  35. Traffic. 2003 Feb;4(2):97-112 [PMID: 12559036]
  36. J Bioenerg Biomembr. 2007 Aug;39(4):321-9 [PMID: 17917797]
  37. Nat Methods. 2010 Oct;7(10):827-9 [PMID: 20818379]
  38. J Clin Invest. 2006 Oct;116(10):2610-21 [PMID: 17016557]
  39. Nature. 2011 Jan 20;469(7330):323-35 [PMID: 21248839]
  40. Autophagy. 2011 Nov;7(11):1273-94 [PMID: 21997368]

Grants

  1. AI048079/NIAID NIH HHS
  2. AI072648/NIAID NIH HHS
  3. 15153/Cancer Research UK
  4. R56 AI048079/NIAID NIH HHS
  5. R01 AI048079/NIAID NIH HHS
  6. R01 AI072648/NIAID NIH HHS

MeSH Term

Amino Acid Sequence
Autophagy
Cell Line
Gene Expression
Genes, Reporter
Humans
Intracellular Membranes
Macrolides
Microtubule-Associated Proteins
Mitochondria
Molecular Sequence Data
Phagosomes
Protein Binding
Protein Transport
rab4 GTP-Binding Proteins

Chemicals

MAP1LC3A protein, human
Macrolides
Microtubule-Associated Proteins
bafilomycin A1
rab4 GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0HRES-1/Rab4mitochondriaLC3starvationrapamycinuponformationcolocalizationautophagytreatment+autophagosomespromotedenhancedincreasedmutantQ72Lshowed1-121accumulationregulatesretentiondominant-negativeS27NdiminishedpartitioningS204QmitochondrialsmallGTPaseendocyticrecyclingcolocalizedmechanistictargetmTORsuppressorSinceautophagosomalmembranecomponentmicrotubule-associatedproteinlightchain3derivedinvestigatedimpactinducedexhibitedminimalbaseline22-fold6-foldColocalization>2-foldoverexpressionreducedconstitutivelyactivePhosphorylation-resistantnewlydiscoveredC-terminallytruncatednativeisoformlocalizationwithoutrestingcellsisoformsautophagosomespecificityHRES-1/Rab4-mediatedindicatedabrogationmutationinterconnectedtubularnetworksmarkedlymaycontributepresentstudythusindicatespromotingpreservationpromotes

Similar Articles

Cited By (27)