Collective behaviour across animal species.

Pietro DeLellis, Giovanni Polverino, Gozde Ustuner, Nicole Abaid, Simone Macrì, Erik M Bollt, Maurizio Porfiri
Author Information
  1. Pietro DeLellis: 1] Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples 80125, Italy [2] Department of Mechanical and Aerospace Engineering, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201, USA.
  2. Giovanni Polverino: Department of Mechanical and Aerospace Engineering, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201, USA.
  3. Gozde Ustuner: Department of Mechanical and Aerospace Engineering, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201, USA.
  4. Nicole Abaid: Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
  5. Simone Macrì: Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma 00161, Italy.
  6. Erik M Bollt: Department of Mathematics, Clarkson University, Potsdam, New York 13699, USA.
  7. Maurizio Porfiri: Department of Mechanical and Aerospace Engineering, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201, USA.

Abstract

We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment.

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022818 [PMID: 23496579]
  2. Sci Am. 1982 Jun;246(6):114-23 [PMID: 7201674]
  3. Trends Cogn Sci. 2009 Jan;13(1):36-43 [PMID: 19058992]
  4. Magn Reson Med. 2008 Jun;59(6):1457-66 [PMID: 18421692]
  5. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5931-5 [PMID: 17389400]
  6. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7 [PMID: 18227508]
  7. Science. 2000 Dec 22;290(5500):2323-6 [PMID: 11125150]
  8. Q Rev Biol. 1988 Sep;63(3):265-89 [PMID: 3059390]
  9. Science. 1969 Nov 14;166(3907):891-4 [PMID: 17815755]
  10. Dev Biol. 1999 Jun 1;210(1):1-14 [PMID: 10364423]
  11. Science. 2000 Dec 22;290(5500):2319-23 [PMID: 11125149]
  12. Behav Brain Res. 2007 Dec 3;184(2):157-66 [PMID: 17707522]
  13. Anim Behav. 1971 May;19(2):386-9 [PMID: 5150482]
  14. Horm Behav. 1976 Jun;7(2):159-82 [PMID: 955579]
  15. Philos Trans R Soc Lond B Biol Sci. 2009 Mar 27;364(1518):781-9 [PMID: 19073481]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041907 [PMID: 22680498]
  17. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5464-9 [PMID: 19336580]

MeSH Term

Algorithms
Animals
Artificial Intelligence
Behavior, Animal
Species Specificity