Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term.

Andrew S Hart, Robb B Rutledge, Paul W Glimcher, Paul E M Phillips
Author Information
  1. Andrew S Hart: Department of Psychiatry and Behavioral Sciences, Department of Pharmacology and Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington 98195, and Center for Neural Science, New York University, New York, New York 10003.

Abstract

Making predictions about the rewards associated with environmental stimuli and updating those predictions through feedback is an essential aspect of adaptive behavior. Theorists have argued that dopamine encodes a reward prediction error (RPE) signal that is used in such a reinforcement learning process. Recent work with fMRI has demonstrated that the BOLD signal in dopaminergic target areas meets both necessary and sufficient conditions of an axiomatic model of the RPE hypothesis. However, there has been no direct evidence that dopamine release itself also meets necessary and sufficient criteria for encoding an RPE signal. Further, the fact that dopamine neurons have low tonic firing rates that yield a limited dynamic range for encoding negative RPEs has led to significant debate about whether positive and negative prediction errors are encoded on a similar scale. To address both of these issues, we used fast-scan cyclic voltammetry to measure reward-evoked dopamine release at carbon fiber electrodes chronically implanted in the nucleus accumbens core of rats trained on a probabilistic decision-making task. We demonstrate that dopamine concentrations transmit a bidirectional RPE signal with symmetrical encoding of positive and negative RPEs. Our findings strengthen the case that changes in dopamine concentration alone are sufficient to encode the full range of RPEs necessary for reinforcement learning.

References

  1. Proc Biol Sci. 2011 Sep 7;278(1718):2553-61 [PMID: 21653585]
  2. Q J Econ. 2010 Dec 31;125(3):923-960 [PMID: 25018564]
  3. Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3:15647-54 [PMID: 21389268]
  4. Nat Neurosci. 2010 Jan;13(1):25-7 [PMID: 19904261]
  5. PLoS One. 2011;6(8):e23291 [PMID: 21829726]
  6. J Neurochem. 2003 Dec;87(5):1284-95 [PMID: 14622108]
  7. J Neurosci. 1994 Oct;14(10):6084-93 [PMID: 7931564]
  8. J Neurosci. 2004 Feb 18;24(7):1754-9 [PMID: 14973252]
  9. Science. 2003 Mar 21;299(5614):1898-902 [PMID: 12649484]
  10. Nature. 2001 Jul 5;412(6842):43-8 [PMID: 11452299]
  11. J Neurophysiol. 1992 Jan;67(1):145-63 [PMID: 1552316]
  12. Science. 1997 Mar 14;275(5306):1593-9 [PMID: 9054347]
  13. Neuroscience. 1988 May;25(2):513-23 [PMID: 3399057]
  14. Psychopharmacology (Berl). 2007 Apr;191(3):483-95 [PMID: 17119929]
  15. Nat Methods. 2010 Feb;7(2):126-9 [PMID: 20037591]
  16. Trends Analyt Chem. 2009 Oct 1;28(9):1127-1136 [PMID: 20160977]
  17. J Neurophysiol. 2007 Sep;98(3):1428-39 [PMID: 17615124]
  18. J Neurosci. 2010 Oct 6;30(40):13525-36 [PMID: 20926678]
  19. J Neurosci. 1996 Mar 1;16(5):1936-47 [PMID: 8774460]
  20. J Neurosci. 2010 Oct 20;30(42):14273-83 [PMID: 20962248]
  21. Nature. 2011 Jan 6;469(7328):53-7 [PMID: 21150898]
  22. Nature. 2013 Aug 29;500(7464):575-9 [PMID: 23913271]
  23. Nat Neurosci. 2013 Jul;16(7):966-73 [PMID: 23708143]
  24. Neuron. 2005 Jul 7;47(1):129-41 [PMID: 15996553]
  25. Nat Neurosci. 2006 Aug;9(8):1057-63 [PMID: 16862149]

Grants

  1. R01 NS054775/NINDS NIH HHS
  2. R01 AG044839/NIA NIH HHS
  3. R01 MH079292/NIMH NIH HHS
  4. R01-DA027858/NIDA NIH HHS
  5. R01-MH079292/NIMH NIH HHS
  6. R01-NS054775/NINDS NIH HHS
  7. R01 DA027858/NIDA NIH HHS

MeSH Term

Animals
Choice Behavior
Dopamine
Forecasting
Male
Nucleus Accumbens
Random Allocation
Rats
Rats, Sprague-Dawley
Reward

Chemicals

Dopamine

Word Cloud

Created with Highcharts 10.0.0dopamineRPEsignalpredictionnecessarysufficientreleaseencodingnegativeRPEspredictionsencodesrewarderrorusedreinforcementlearningmeetsrangepositivenucleusaccumbensMakingrewardsassociatedenvironmentalstimuliupdatingfeedbackessentialaspectadaptivebehaviorTheoristsarguedprocessRecentworkfMRIdemonstratedBOLDdopaminergictargetareasconditionsaxiomaticmodelhypothesisHoweverdirectevidencealsocriteriafactneuronslowtonicfiringratesyieldlimiteddynamicledsignificantdebatewhethererrorsencodedsimilarscaleaddressissuesfast-scancyclicvoltammetrymeasurereward-evokedcarbonfiberelectrodeschronicallyimplantedcoreratstrainedprobabilisticdecision-makingtaskdemonstrateconcentrationstransmitbidirectionalsymmetricalfindingsstrengthencasechangesconcentrationaloneencodefullPhasicratsymmetricallyterm

Similar Articles

Cited By