Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

Alexander Basner, Garabed Antranikian
Author Information
  1. Alexander Basner: Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany.
  2. Garabed Antranikian: Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany.

Abstract

glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

References

  1. J Biochem. 2011 Jun;149(6):701-12 [PMID: 21349860]
  2. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  3. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  4. Electrophoresis. 1997 Dec;18(15):2714-23 [PMID: 9504803]
  5. Appl Microbiol Biotechnol. 2003 May;61(4):329-35 [PMID: 12743762]
  6. J Bacteriol. 1992 Aug;174(15):5013-20 [PMID: 1629157]
  7. Int J Pediatr Endocrinol. 2012 Oct 26;2012(1):28 [PMID: 23098076]
  8. Extremophiles. 2010 Mar;14(2):193-204 [PMID: 20049620]
  9. J Bacteriol. 2005 Mar;187(5):1581-90 [PMID: 15716428]
  10. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  11. Biosci Biotechnol Biochem. 2006 Mar;70(3):654-9 [PMID: 16556981]
  12. Arch Biochem Biophys. 1994 May 1;310(2):360-6 [PMID: 8179320]
  13. Protein Expr Purif. 2005 May;41(1):207-34 [PMID: 15915565]
  14. Biochem Biophys Res Commun. 2001 Dec 7;289(3):712-7 [PMID: 11726206]
  15. BMC Biochem. 2005 Dec 16;6:28 [PMID: 16359545]
  16. Arch Biochem Biophys. 1995 Jan 10;316(1):163-8 [PMID: 7840612]
  17. J Biochem. 2001 Feb;129(2):303-12 [PMID: 11173533]
  18. Bioinformatics. 2000 Apr;16(4):404-5 [PMID: 10869041]
  19. Eur J Biochem. 2002 Sep;269(18):4409-17 [PMID: 12230552]
  20. J Biol Chem. 2010 Jun 25;285(26):20006-14 [PMID: 20410293]
  21. Biochim Biophys Acta. 1991 Jan 29;1076(2):298-304 [PMID: 1900201]
  22. Biochem J. 1986 Nov 1;239(3):517-22 [PMID: 3827812]
  23. Cell Mol Life Sci. 2008 Dec;65(24):3895-906 [PMID: 19011750]
  24. Arch Biochem Biophys. 1972 Mar;149(1):102-9 [PMID: 4401559]
  25. FEBS J. 2010 May;277(10):2375-86 [PMID: 20423462]
  26. Can J Microbiol. 2006 Jun;52(6):519-24 [PMID: 16788719]
  27. Biochim Biophys Acta. 2003 Feb 21;1645(2):133-8 [PMID: 12573242]
  28. Appl Environ Microbiol. 2011 Feb;77(4):1153-61 [PMID: 21169428]
  29. J Bacteriol. 1962 Apr;83:699-707 [PMID: 13863702]
  30. J Mol Biol. 2002 Oct 11;323(1):69-76 [PMID: 12368099]
  31. Chem Biol Interact. 2003 Feb 1;143-144:247-53 [PMID: 12604210]
  32. Protein Sci. 2002 Sep;11(9):2125-37 [PMID: 12192068]
  33. J Biol Chem. 1972 Apr 10;247(7):2222-7 [PMID: 4335867]
  34. Lett Appl Microbiol. 2011 Aug;53(2):155-60 [PMID: 21585405]
  35. Biosci Biotechnol Biochem. 2004 Dec;68(12):2451-6 [PMID: 15618614]
  36. Chem Biol Interact. 2009 Mar 16;178(1-3):94-8 [PMID: 19027726]
  37. J Mol Biol. 2007 Apr 6;367(4):1034-46 [PMID: 17300803]
  38. Arch Microbiol. 1997 Aug;168(2):120-7 [PMID: 9238103]
  39. Methods Enzymol. 1975;41:142-7 [PMID: 236431]
  40. Recent Pat Biotechnol. 2007;1(2):167-80 [PMID: 19075839]
  41. Mol Cell Biochem. 2004 May;260(1-2):69-83 [PMID: 15228088]
  42. J Bacteriol. 1977 Oct;132(1):282-93 [PMID: 21162]
  43. FEBS Lett. 1996 Apr 1;383(3):227-9 [PMID: 8925901]
  44. Curr Opin Struct Biol. 1995 Dec;5(6):775-83 [PMID: 8749365]
  45. FEMS Microbiol Lett. 2002 Nov 5;216(2):249-53 [PMID: 12435510]

MeSH Term

Amino Acid Sequence
Enzyme Stability
Escherichia coli
Glucose
Glucose 1-Dehydrogenase
Hydrolysis
Kinetics
Metagenome
Molecular Sequence Data
Poaceae
Sequence Analysis
Substrate Specificity
Temperature

Chemicals

Glucose 1-Dehydrogenase
Glucose

Word Cloud

Created with Highcharts 10.0.0glucoseenzymeNADPdehydrogenasescharacterizedhydrolyzingbloodrecombinantisolatedhayinfusionsubstratesequencedehydrogenaseassociatedcofactorGlucoseenzymesessentialdeterminelevelhigh-throughputscreeningapproachestablishedidentify-dependentapplicationteststripesrespectivemeterscurrentreportderivedmetagenomiclibraryexpressingDNAfragmentscloneshowingactivityexhibitedopenreadingframe987bpencodingpeptide328aminoacidsshowedtypicalmotifsshort-chain-dehydrogenasesusingco-factorsimilarity3335%differentBacillusspeciesidentifiedgeneexpressedEcolipurifiedsubsequentlybelongingsuperfamilyshort-chainshowsbroadrangehighaffinityxyloseglucose-6-phosphateDueabilitystronglyabledirectlytransferelectronsoxidationexternalelectronacceptorsregeneratingstillproteinIsolationbiochemicalcharacterizationmetagenome

Similar Articles

Cited By (5)