Combinatorial therapy discovery using mixed integer linear programming.

Kaifang Pang, Ying-Wooi Wan, William T Choi, Lawrence A Donehower, Jingchun Sun, Dhruv Pant, Zhandong Liu
Author Information
  1. Kaifang Pang: Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Department of Pediatrics-Neurology, Department of Obstetrics and Gynaecology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA, and Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Abstract

MOTIVATION: Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction.
RESULTS: Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set.
AVAILABILITY: Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/.
CONTACT: zhandong.liu@bcm.edu
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

References

  1. PLoS Comput Biol. 2011 Dec;7(12):e1002323 [PMID: 22219721]
  2. BMC Syst Biol. 2012;6 Suppl 1:S5 [PMID: 23046711]
  3. Can J Physiol Pharmacol. 1988 May;66(5):648-54 [PMID: 2970886]
  4. Bioinformatics. 2009 Oct 1;25(19):2595-6602 [PMID: 19602527]
  5. Eur Heart J. 2008 Feb;29(3):324-31 [PMID: 18245119]
  6. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  7. BMC Cancer. 2010 May 11;10:188 [PMID: 20459769]
  8. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5105-10 [PMID: 18356295]
  9. BMC Syst Biol. 2009 Aug 06;3:81 [PMID: 19660129]
  10. Drugs. 2009 Jul 30;69(11):1433-43 [PMID: 19634922]
  11. Diabetes Obes Metab. 2011 Mar;13(3):268-75 [PMID: 21205123]
  12. Am J Med Sci. 2003 Feb;325(2):66-9 [PMID: 12589230]
  13. Wiley Interdiscip Rev Syst Biol Med. 2010 Mar-Apr;2(2):181-193 [PMID: 20836021]
  14. PLoS Comput Biol. 2008 Dec;4(12):e1000249 [PMID: 19112483]
  15. Diabetes Care. 2002 Dec;25(12):2133-40 [PMID: 12453950]
  16. Mov Disord. 1997 Jul;12(4):497-505 [PMID: 9251066]
  17. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  18. Ann Intern Med. 1999 Jul 20;131(2):81-7 [PMID: 10419445]
  19. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7977-82 [PMID: 12799470]
  20. Nat Rev Drug Discov. 2005 Dec;4(12):988-1004 [PMID: 16341064]
  21. Nat Rev Drug Discov. 2009 Feb;8(2):111-28 [PMID: 19180105]
  22. Nat Chem Biol. 2008 Nov;4(11):682-90 [PMID: 18936753]
  23. Arch Neurol. 1991 Jan;48(1):31-4 [PMID: 1898848]
  24. Nat Biotechnol. 2009 Jul;27(7):659-66 [PMID: 19581876]
  25. Clin Neuropharmacol. 1991 Jun;14(3):228-34 [PMID: 1906374]
  26. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  27. Nat Biotechnol. 2006 Jul;24(7):805-15 [PMID: 16841068]
  28. Nat Rev Neurosci. 2006 Apr;7(4):295-309 [PMID: 16552415]
  29. Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):19024-9 [PMID: 22065749]
  30. N Engl J Med. 2005 Feb 24;352(8):786-92 [PMID: 15728811]
  31. Bioinformatics. 2010 Feb 15;26(4):587-8 [PMID: 20031966]
  32. Eur Heart J. 2002 Aug;23(16):1282-90 [PMID: 12175665]
  33. Cancer Chemother Pharmacol. 2013 Nov;72(5):1089-96 [PMID: 24057042]
  34. Am Fam Physician. 2008 May 1;77(9):1279-86 [PMID: 18540493]
  35. Curr Med Res Opin. 1996;13(7):409-15 [PMID: 8862940]
  36. BMC Syst Biol. 2010 Sep 13;4 Suppl 2:S7 [PMID: 20840734]
  37. BMC Bioinformatics. 2006 Mar 22;7:166 [PMID: 16551372]
  38. N Engl J Med. 2012 Aug 2;367(5):435-44 [PMID: 22853014]
  39. Cancer Res. 2006 Feb 1;66(3):1500-8 [PMID: 16452206]
  40. Am J Med Genet B Neuropsychiatr Genet. 2008 Oct 5;147B(7):1173-81 [PMID: 18361404]
  41. Nat Biotechnol. 2012 Nov;30(11):1125-30 [PMID: 23064238]
  42. Med Welt. 1981 Jun 12;32(24):985-7 [PMID: 7253906]
  43. Neurology. 2004 Jan 13;62(1 Suppl 1):S64-71 [PMID: 14718682]
  44. Oncologist. 2012;17(4):536-42 [PMID: 22477724]
  45. Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41 [PMID: 21059682]
  46. Diabetes Obes Metab. 2006 Jan;8(1):39-48 [PMID: 16367881]
  47. Psychiatry Clin Neurosci. 1998 Dec;52 Suppl:S193-8 [PMID: 9895145]
  48. Mol Psychiatry. 2010 May;15(5):453-62 [PMID: 20424623]
  49. Nat Biotechnol. 2007 Oct;25(10):1119-26 [PMID: 17921997]

Grants

  1. DP5 OD009134/NIH HHS
  2. 5DP5OD009134/NIH HHS

MeSH Term

Algorithms
Databases, Factual
Diabetes Mellitus, Type 2
Drug Combinations
Gene Regulatory Networks
Humans
Myocardial Infarction
Programming, Linear
Software Design

Chemicals

Drug Combinations

Word Cloud

Created with Highcharts 10.0.0drugcombinationsdiseasegenesetoptimalsearchalgorithmsBTSCMOTSCCombinatorialcostcomputationalapproachesdevelopedtherapySetCoverseekscoverageoff-targettimetoolavailableMOTIVATION:therapiesplayincreasinglyimportantrolescombatingcomplexdiseasesOwinghugeassociatedexperimentalmethodsidentifyingcanprovideguidelimitspacereduceHoweverpurposethusgreatneednewcombinationpredictionRESULTS:proposedformulatecombinatorialproblemtwocomplementarymathematicalBalancedTargetMinimumOff-TargetGivenbalancedsolutionmaximizesgenesminimizeshitsfullminimizingsimulationdemonstratedmuchfasterrunningexhaustiveaccuracyappliedrealsetsidentifiedknownalsopredictednovelworthtestingadditionweb-basedallowusersiterativelygivenuser-definedAVAILABILITY:freelynoncommercialusehttp://wwwliuzlaborg/CONTACT:zhandongliu@bcmeduSUPPLEMENTARYINFORMATION:SupplementarydataBioinformaticsonlinediscoveryusingmixedintegerlinearprogramming

Similar Articles

Cited By