Vertical nanowire probes for intracellular signaling of living cells.

Ki-Young Lee, Ilsoo Kim, So-Eun Kim, Du-Won Jeong, Ju-Jin Kim, Hyewhon Rhim, Jae-Pyeong Ahn, Seung-Han Park, Heon-Jin Choi
Author Information
  1. Heon-Jin Choi: Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea. hjc@yonsei.ac.kr.

Abstract

The single living cell action potential was measured in an intracellular mode by using a vertical nanoelectrode. For intracellular interfacing, Si nanowires were vertically grown in a controlled manner, and optimum conditions, such as diameter, length, and nanowire density, were determined by culturing cells on the nanowires. Vertical nanowire probes were then fabricated with a complimentary metal-oxide-semiconductor (CMOS) process including sequential deposition of the passivation and electrode layers on the nanowires, and a subsequent partial etching process. The fabricated nanowire probes had an approximately 60-nm diameter and were intracellular. These probes interfaced with a GH3 cell and measured the spontaneous action potential. It successfully measured the action potential, which rapidly reached a steady state with average peak amplitude of approximately 10 mV, duration of approximately 140 ms, and period of 0.9 Hz.

References

  1. Analyst. 2002 Sep;127(9):1137-51 [PMID: 12375833]
  2. Nano Lett. 2005 Mar;5(3):457-60 [PMID: 15755094]
  3. J Neurosci. 1998 Dec 15;18(24):10464-72 [PMID: 9852584]
  4. Science. 2006 Aug 25;313(5790):1100-4 [PMID: 16931757]
  5. Trends Neurosci. 1997 Mar;20(3):125-31 [PMID: 9061867]
  6. J Neurosci Methods. 1999 Feb 1;87(1):45-56 [PMID: 10065993]
  7. Science. 1997 Jan 10;275(5297):213-5 [PMID: 8985014]
  8. J Am Chem Soc. 2007 Jun 13;129(23):7228-9 [PMID: 17516647]
  9. Proc Biol Sci. 1991 Aug 22;245(1313):127-31 [PMID: 1719560]
  10. J Neurosci. 2003 Dec 3;23(35):11167-77 [PMID: 14657176]
  11. Biosens Bioelectron. 1990;5(3):223-34 [PMID: 2206490]
  12. Nanoscale Res Lett. 2013 Nov 26;8(1):502 [PMID: 24279451]
  13. Nat Mater. 2007 May;6(5):379-84 [PMID: 17450146]
  14. Neuroscience. 1993 Mar;53(2):519-26 [PMID: 8098516]
  15. Jpn J Physiol. 1994;44(5):433-73 [PMID: 7534361]
  16. ACS Nano. 2009 Mar 24;3(3):563-8 [PMID: 19309170]
  17. Anal Bioanal Chem. 2006 Feb;384(3):620-30 [PMID: 16440195]
  18. IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):151-5 [PMID: 12899260]
  19. Nat Rev Neurosci. 2007 Jun;8(6):451-65 [PMID: 17514198]
  20. Pflugers Arch. 1981 Aug;391(2):85-100 [PMID: 6270629]
  21. Nat Neurosci. 2001 Feb;4(2):184-93 [PMID: 11175880]
  22. Nano Lett. 2010 Oct 13;10(10):4020-4 [PMID: 20815404]
  23. IEEE Trans Nanotechnol. 2010 May;9(3):269-280 [PMID: 21785576]
  24. Science. 2010 Aug 13;329(5993):830-4 [PMID: 20705858]
  25. Nanoscale Res Lett. 2009 Dec 04;5(2):410-5 [PMID: 20672083]
  26. J Am Chem Soc. 2002 Aug 14;124(32):9606-12 [PMID: 12167056]
  27. Biosens Bioelectron. 1997;12(8):819-26 [PMID: 9421889]
  28. Q Rev Biophys. 2002 Feb;35(1):63-87 [PMID: 11997981]
  29. Chemphyschem. 2002 Mar 12;3(3):276-84 [PMID: 12503174]