Comparative analysis and limitations of ethidium monoazide and propidium monoazide treatments for the differentiation of viable and nonviable campylobacter cells.

Diana Seinige, Carsten Krischek, Günter Klein, Corinna Kehrenberg
Author Information
  1. Diana Seinige: Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.

Abstract

The lack of differentiation between viable and nonviable bacterial cells limits the implementation of PCR-based methods for routine diagnostic approaches. Recently, the combination of a quantitative real-time PCR (qPCR) and ethidium monoazide (EMA) or propidium monoazide (PMA) pretreatment has been described to circumvent this disadvantage. In regard to the suitability of this approach for Campylobacter spp., conflicting results have been reported. Thus, we compared the suitabilities of EMA and PMA in various concentrations for a Campylobacter viability qPCR method. The presence of either intercalating dye, EMA or PMA, leads to concentration-dependent shifts toward higher threshold cycle (CT) values, especially after EMA treatment. However, regression analysis resulted in high correlation coefficient (R(2)) values of 0.99 (EMA) and 0.98 (PMA) between Campylobacter counts determined by qPCR and culture-based enumeration. EMA (10 μg/ml) and PMA (51.10 μg/ml) removed DNA selectively from nonviable cells in mixed samples at viable/nonviable ratios of up to 1:1,000. The optimized EMA protocol was successfully applied to 16 Campylobacter jejuni and Campylobacter coli field isolates from poultry and indicated the applicability for field isolates as well. EMA-qPCR and culture-based enumeration of Campylobacter spiked chicken leg quarters resulted in comparable bacterial cell counts. The correlation coefficient between the two analytical methods was 0.95. Nevertheless, larger amounts of nonviable cells (>10(4)) resulted in an incomplete qPCR signal reduction, representing a serious methodological limitation, but double staining with EMA considerably improved the signal inhibition. Hence, the proposed Campylobacter viability EMA-qPCR provides a promising rapid method for diagnostic applications, but further research is needed to circumvent the limitation.

References

  1. J Appl Microbiol. 2012 Apr;112(4):752-64 [PMID: 22256961]
  2. Appl Environ Microbiol. 2012 Feb;78(3):839-45 [PMID: 22138985]
  3. Appl Environ Microbiol. 2007 Aug;73(16):5111-7 [PMID: 17586667]
  4. Helicobacter. 2010 Oct;15(5):473-6 [PMID: 21083754]
  5. J Microbiol Methods. 2012 Nov;91(2):276-89 [PMID: 22940102]
  6. FEMS Microbiol Lett. 2009 Feb;291(2):137-42 [PMID: 19054073]
  7. Jpn J Infect Dis. 2010 Mar;63(2):119-23 [PMID: 20332575]
  8. Dtsch Med Wochenschr. 2007;132 Suppl 1:e69-73 [PMID: 17530604]
  9. BMC Microbiol. 2011 May 22;11:113 [PMID: 21600037]
  10. J Appl Microbiol. 2012 Oct;113(4):863-73 [PMID: 22747901]
  11. J Appl Microbiol. 2008 Dec;105(6):1909-18 [PMID: 19016974]
  12. Epidemiol Infect. 2006 Aug;134(4):758-67 [PMID: 16316490]
  13. Appl Environ Microbiol. 2006 Mar;72(3):1997-2004 [PMID: 16517648]
  14. Appl Environ Microbiol. 2007 Dec;73(24):8028-31 [PMID: 17933922]
  15. Res Microbiol. 2007 Jun;158(5):405-12 [PMID: 17449228]
  16. Res Microbiol. 2012 Jan;163(1):64-72 [PMID: 22064380]
  17. J Microbiol Methods. 2006 Nov;67(2):310-20 [PMID: 16753236]
  18. J Microbiol Methods. 2007 Aug;70(2):252-60 [PMID: 17544161]
  19. Appl Environ Microbiol. 2010 Aug;76(15):5097-104 [PMID: 20562292]
  20. FEMS Microbiol Lett. 2003 Dec 12;229(2):237-41 [PMID: 14680705]
  21. J Food Sci. 2010 Apr;75(3):M134-9 [PMID: 20492302]
  22. Food Microbiol. 2010 Jun;27(4):439-46 [PMID: 20417391]
  23. J Microbiol Methods. 2013 Oct;95(1):32-8 [PMID: 23811205]
  24. J Appl Microbiol. 2001 Aug;91(2):255-67 [PMID: 11473590]
  25. J Food Prot. 2010 Feb;73(2):241-50 [PMID: 20132668]
  26. J Appl Microbiol. 2008 Oct;105(4):1178-85 [PMID: 18624747]
  27. Future Microbiol. 2009 Feb;4(1):45-64 [PMID: 19207099]
  28. Vet Microbiol. 2012 Oct 12;159(3-4):390-6 [PMID: 22565009]
  29. Appl Environ Microbiol. 2009 May;75(9):2940-4 [PMID: 19270114]
  30. Appl Environ Microbiol. 2009 Nov;75(21):6856-63 [PMID: 19749067]
  31. Appl Environ Microbiol. 2005 Feb;71(2):1018-24 [PMID: 15691961]

MeSH Term

Animals
Azides
Bacterial Load
Campylobacter coli
Campylobacter jejuni
Cell Survival
Chickens
Enzyme Inhibitors
Propidium
Real-Time Polymerase Chain Reaction
Staining and Labeling

Chemicals

Azides
Enzyme Inhibitors
propidium monoazide
Propidium
8-azidoethidium

Word Cloud

Created with Highcharts 10.0.0EMACampylobacterPMAnonviablecellsqPCRmonoazideresulted0differentiationviablebacterialmethodsdiagnosticethidiumpropidiumcircumventviabilitymethodvaluesanalysiscorrelationcoefficientcountsculture-basedenumeration10μg/mlfieldisolatesEMA-qPCRsignallimitationlacklimitsimplementationPCR-basedroutineapproachesRecentlycombinationquantitativereal-timePCRpretreatmentdescribeddisadvantageregardsuitabilityapproachsppconflictingresultsreportedThuscomparedsuitabilitiesvariousconcentrationspresenceeitherintercalatingdyeleadsconcentration-dependentshiftstowardhigherthresholdcycleCTespeciallytreatmentHoweverregressionhighR29998determined51removedDNAselectivelymixedsamplesviable/nonviableratios1:1000optimizedprotocolsuccessfullyapplied16jejunicolipoultryindicatedapplicabilitywellspikedchickenlegquarterscomparablecelltwoanalytical95Neverthelesslargeramounts>104incompletereductionrepresentingseriousmethodologicaldoublestainingconsiderablyimprovedinhibitionHenceproposedprovidespromisingrapidapplicationsresearchneededComparativelimitationstreatmentscampylobacter

Similar Articles

Cited By