Genes selection comparative study in microarray data analysis.

Ouafae Kaissi, Eric Nimpaye, Tiratha Raj Singh, Brigitte Vannier, Azeddine Ibrahimi, Abdellatif Amrani Ghacham, Ahmed Moussa
Author Information
  1. Ouafae Kaissi: LTI Laboratory, ENSA, Adbelmalek Essaadi University, Tangier, Morocco.
  2. Eric Nimpaye: LabTIC Laboratory, ENSA, Abdelmalek Essaadi University, Tangier, Morocco.
  3. Tiratha Raj Singh: Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, H.P, India.
  4. Brigitte Vannier: Research Group 2RTC, University of Poitiers, France.
  5. Azeddine Ibrahimi: Medical Biotechnology Laboratory, FMP, Mohammed V Suissi University, Rabat, Morocco.
  6. Abdellatif Amrani Ghacham: LTI Laboratory, ENSA, Adbelmalek Essaadi University, Tangier, Morocco.
  7. Ahmed Moussa: LabTIC Laboratory, ENSA, Abdelmalek Essaadi University, Tangier, Morocco.

Abstract

In response to the rapid development of DNA Microarray Technologies, many differentially expressed genes selection algorithms have been developed, and different comparison studies of these algorithms have been done. However, it is not clear how these methods compare with each other, especially when we used different developments tools. Here, we considered three commonly used differentially expressed genes selection approaches, namely: Fold Change, T-test and SAM, using Bioinformatics Matlab Toolbox and R/BioConductor. We used two datasets, issued from the affymetrix technology, to present results of used methods and software's in gene selection process. The results, in terms of sensitivity and specificity, indicate that the behavior of SAM is better compared to Fold Change and T-test using R/BioConductor. While, no practical differences were observed between the three gene selection methods when using Bioinformatics Matlab Toolbox. In face of our result, the ROC curve shows that: on the one hand R/BioConductor using SAM is favored for microarray selection compared to the other methods. And, on the other hand, results of the three studied gene selection methods using Bioinformatics Matlab Toolbox are still comparable for the two datasets used.

Keywords

References

  1. J Comput Biol. 2000;7(6):805-17 [PMID: 11382363]
  2. Bioinformatics. 2003 Jul 22;19(11):1333-40 [PMID: 12874044]
  3. Nucleic Acids Res. 2008 Oct;36(17):e108 [PMID: 18676452]
  4. Nucleic Acids Res. 2003 Feb 15;31(4):e15 [PMID: 12582260]
  5. BMC Bioinformatics. 2010 May 27;11:285 [PMID: 20507584]
  6. J Biomed Opt. 1997 Oct;2(4):364-74 [PMID: 23014960]
  7. Behav Brain Res. 2001 Nov 1;125(1-2):279-84 [PMID: 11682119]
  8. Biostatistics. 2001 Jun;2(2):183-201 [PMID: 12933549]
  9. Genome Biol. 2005;6(2):R16 [PMID: 15693945]
  10. Bioinformatics. 2003 Apr 12;19(6):694-703 [PMID: 12691981]
  11. BMC Bioinformatics. 2006 Jul 26;7:359 [PMID: 16872483]
  12. Br J Cancer. 2010 Apr 13;102(8):1284-93 [PMID: 20197764]
  13. J Cell Biochem Suppl. 2001;Suppl 37:120-5 [PMID: 11842437]
  14. Stat Med. 2003 Dec 30;22(24):3899-914 [PMID: 14673946]
  15. Bioinformatics. 2001 Jun;17(6):509-19 [PMID: 11395427]
  16. Bioinformation. 2013 Oct 16;9(17):849-52 [PMID: 24250110]
  17. Biostatistics. 2007 Apr;8(2):414-32 [PMID: 16928955]
  18. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 [PMID: 11309499]

Word Cloud

Created with Highcharts 10.0.0selectionmethodsusedusingBioinformaticsMatlabToolboxR/BioConductorthreeSAMresultsgeneMicroarraydifferentiallyexpressedgenesalgorithmsdifferentFoldChangeT-testtwodatasetscomparedhandmicroarraydataresponserapiddevelopmentDNATechnologiesmanydevelopedcomparisonstudiesdoneHoweverclearcompareespeciallydevelopmentstoolsconsideredcommonlyapproachesnamely:issuedaffymetrixtechnologypresentsoftware'sprocesstermssensitivityspecificityindicatebehaviorbetterpracticaldifferencesobservedfaceresultROCcurveshowsthat:onefavoredstudiedstillcomparableGenescomparativestudyanalysisComparativeStudyGene

Similar Articles

Cited By