Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages.

Chihiro Nishi, Satoshi Toda, Katsumori Segawa, Shigekazu Nagata
Author Information
  1. Chihiro Nishi: Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Abstract

Apoptotic cells are swiftly engulfed by macrophages to prevent the release of noxious materials from dying cells. Apoptotic cells expose phosphatidylserine (PtdSer) on their surface, and macrophages engulf them by recognizing PtdSer using specific receptors and opsonins. Here, we found that mouse resident peritoneal macrophages expressing Tim4 and MerTK are highly efficient at engulfing apoptotic cells. Neutralizing antibodies against either Tim4 or MerTK inhibited the macrophage engulfment of apoptotic cells. Tim4-null macrophages exhibited reduced binding and engulfment of apoptotic cells, whereas MerTK-null macrophages retained the ability to bind apoptotic cells but failed to engulf them. The incubation of wild-type peritoneal macrophages with apoptotic cells induced the rapid tyrosine phosphorylation of MerTK, which was not observed with Tim4-null macrophages. When mouse Ba/F3 cells were transformed with Tim4, apoptotic cells bound to the transformants but were not engulfed. Transformation of Ba/F3 cells with MerTK had no effect on the binding or engulfment of apoptotic cells; however, Tim4/MerTK transformants exhibited strong engulfment activity. Taken together, these results indicate that the engulfment of apoptotic cells by resident peritoneal macrophages proceeds in two steps: binding to Tim4, a PtdSer receptor, followed by MerTK-mediated cell engulfment.

References

  1. Nature. 2002 May 9;417(6885):182-7 [PMID: 12000961]
  2. Curr Biol. 2001 Oct 2;11(19):R795-805 [PMID: 11591341]
  3. J Biol Chem. 1993 Sep 5;268(25):18542-8 [PMID: 8395508]
  4. Mol Cell Biol. 2012 Jan;32(1):118-25 [PMID: 22037761]
  5. Science. 2013 Jul 26;341(6144):403-6 [PMID: 23845944]
  6. EMBO Rep. 2011 Apr;12(4):358-64 [PMID: 21399623]
  7. Eur J Immunol. 2003 Aug;33(8):2160-7 [PMID: 12884290]
  8. Biochem Biophys Res Commun. 2004 Sep 10;322(1):197-202 [PMID: 15313191]
  9. J Exp Med. 2002 Jul 1;196(1):135-40 [PMID: 12093878]
  10. J Biol Chem. 1996 Nov 15;271(46):28753-6 [PMID: 8910516]
  11. Semin Immunopathol. 2013 Sep;35(5):541-52 [PMID: 23579230]
  12. Nat Rev Immunol. 2008 May;8(5):327-36 [PMID: 18421305]
  13. Nature. 2001 May 10;411(6834):207-11 [PMID: 11346799]
  14. J Cell Biol. 2001 Nov 12;155(4):649-59 [PMID: 11706053]
  15. Nat Genet. 2000 Nov;26(3):270-1 [PMID: 11062461]
  16. J Cell Sci. 2005 Feb 1;118(Pt 3):539-53 [PMID: 15673687]
  17. J Immunol Methods. 2009 Mar 15;342(1-2):71-7 [PMID: 19135446]
  18. J Biol Chem. 1996 Nov 22;271(47):30022-7 [PMID: 8939948]
  19. J Immunol. 2008 Feb 15;180(4):2329-38 [PMID: 18250442]
  20. Curr Opin Immunol. 2010 Dec;22(6):740-6 [PMID: 21030229]
  21. J Immunol. 2007 May 1;178(9):5635-42 [PMID: 17442946]
  22. Immunol Rev. 2007 Aug;218:135-46 [PMID: 17624950]
  23. Gene Ther. 2000 Jun;7(12):1063-6 [PMID: 10871756]
  24. Cell. 2010 Mar 5;140(5):619-30 [PMID: 20211132]
  25. J Immunol. 1992 Apr 1;148(7):2207-16 [PMID: 1545126]
  26. Blood. 2004 Feb 15;103(4):1192-201 [PMID: 12907438]
  27. Front Biol (Beijing). 2010 Jun;5(3):227-237 [PMID: 21057587]
  28. Nat Rev Rheumatol. 2010 May;6(5):280-9 [PMID: 20431553]
  29. Cell. 2007 Dec 14;131(6):1124-36 [PMID: 18083102]
  30. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12005-10 [PMID: 17620600]
  31. Nature. 2007 Nov 15;450(7168):435-9 [PMID: 17960135]
  32. Nature. 2007 Nov 15;450(7168):430-4 [PMID: 17960134]
  33. Mol Cell Biol. 2012 Jul;32(14):2698-708 [PMID: 22566688]
  34. Annu Rev Biochem. 1986;55:167-93 [PMID: 2943218]
  35. Cell. 2005 Oct 21;123(2):321-34 [PMID: 16239148]
  36. J Immunol. 2010 Nov 15;185(10):5859-68 [PMID: 20952679]
  37. J Leukoc Biol. 2004 Apr;75(4):705-13 [PMID: 14704368]
  38. Nat Immunol. 2003 Jan;4(1):87-91 [PMID: 12447359]
  39. Int Immunol. 2012 Sep;24(9):551-9 [PMID: 22723547]
  40. Nature. 1999 Apr 22;398(6729):723-8 [PMID: 10227296]
  41. Thromb Res. 2010 Feb;125(2):e33-9 [PMID: 19878975]
  42. Immunity. 2011 Oct 28;35(4):445-55 [PMID: 22035837]
  43. Semin Immunopathol. 2013 Sep;35(5):533-40 [PMID: 23783507]
  44. Exp Hematol. 2003 Nov;31(11):1007-14 [PMID: 14585362]
  45. J Exp Med. 2010 Aug 30;207(9):1807-17 [PMID: 20805564]
  46. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3461-6 [PMID: 9520388]

MeSH Term

Animals
Apoptosis
Cell Line
Cells, Cultured
Macrophages, Peritoneal
Membrane Proteins
Mice
Mice, Inbred C57BL
Phagocytosis
Phosphatidylserines
Proto-Oncogene Proteins
Receptor Protein-Tyrosine Kinases
Receptors, Cell Surface
c-Mer Tyrosine Kinase

Chemicals

Membrane Proteins
Phosphatidylserines
Proto-Oncogene Proteins
Receptors, Cell Surface
TIM-4 protein, mouse
phosphatidylserine receptor
Mertk protein, mouse
Receptor Protein-Tyrosine Kinases
c-Mer Tyrosine Kinase

Word Cloud

Created with Highcharts 10.0.0cellsmacrophagesapoptoticengulfmentperitonealTim4MerTKPtdSermouseresidentbindingApoptoticengulfedengulfTim4-nullexhibitedBa/F3transformantsMerTK-mediatedswiftlypreventreleasenoxiousmaterialsdyingexposephosphatidylserinesurfacerecognizingusingspecificreceptorsopsoninsfoundexpressinghighlyefficientengulfingNeutralizingantibodieseitherinhibitedmacrophagereducedwhereasMerTK-nullretainedabilitybindfailedincubationwild-typeinducedrapidtyrosinephosphorylationobservedtransformedboundTransformationeffecthoweverTim4/MerTKstrongactivityTakentogetherresultsindicateproceedstwosteps:receptorfollowedcellTim4-

Similar Articles

Cited By