The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting.

Fu Li, Long Yi, Lei Zhao, Aymelt Itzen, Roger S Goody, Yao-Wen Wu
Author Information
  1. Fu Li: Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.

Abstract

Intracellular membrane trafficking requires correct and specific localization of Rab GTPases. The hypervariable C-terminal domain (HVD) of Rabs is posttranslationally modified by isoprenyl moieties that enable membrane association. A model asserting HVD-directed targeting has been contested in previous studies, but the role of the Rab HVD and the mechanism of Rab membrane targeting remain elusive. To elucidate the function of the HVD, we have substituted this region with an unnatural polyethylenglycol (PEG) linker by using oxime ligation. The PEGylated Rab proteins undergo normal prenylation, underlining the unique ability of the Rab prenylation machinery to process the Rab family with diverse C-terminal sequences. Through localization studies and functional analyses of semisynthetic PEGylated Rab1, Rab5, Rab7, and Rab35 proteins, we demonstrate that the role of the HVD of Rabs in membrane targeting is more complex than previously understood. The HVD of Rab1 and Rab5 is dispensable for membrane targeting and appears to function simply as a linker between the GTPase domain and the membrane. The N-terminal residues of the Rab7 HVD are important for late endosomal/lysosomal localization, apparently due to their involvement in interaction with the Rab7 effector Rab-interacting lysosomal protein. The C-terminal polybasic cluster of the Rab35 HVD is essential for plasma membrane (PM) targeting, presumably because of the electrostatic interaction with negatively charged lipids on the PM. Our findings suggest that Rab membrane targeting is dictated by a complex mechanism involving GEFs, GAPs, effectors, and C-terminal interaction with membranes to varying extents, and possibly other binding partners.

Keywords

References

  1. Curr Biol. 2010 Sep 28;20(18):1654-9 [PMID: 20797862]
  2. Cell. 2008 Jun 27;133(7):1202-13 [PMID: 18585354]
  3. Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25 [PMID: 19603039]
  4. Nat Chem Biol. 2010 Jul;6(7):534-40 [PMID: 20512138]
  5. Angew Chem Int Ed Engl. 2011 Aug 29;50(36):8287-90 [PMID: 21761514]
  6. Science. 2003 Oct 24;302(5645):646-50 [PMID: 14576435]
  7. Traffic. 2011 Aug;12(8):1056-66 [PMID: 21554507]
  8. Nat Struct Mol Biol. 2007 May;14(5):406-12 [PMID: 17450153]
  9. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10712-6 [PMID: 7938016]
  10. Cell. 2009 Aug 21;138(4):787-94 [PMID: 19703403]
  11. Curr Opin Cell Biol. 1998 Feb;10(1):52-9 [PMID: 9484595]
  12. Cell. 2010 Oct 15;143(2):191-200 [PMID: 20946979]
  13. Nature. 2010 Apr 1;464(7289):778-82 [PMID: 20305638]
  14. Nature. 2003 Oct 23;425(6960):856-9 [PMID: 14574414]
  15. J Mol Biol. 2000 Aug 25;301(4):1077-87 [PMID: 10966806]
  16. Nature. 2005 Jul 21;436(7049):415-9 [PMID: 16034420]
  17. EMBO J. 1997 Feb 3;16(3):465-72 [PMID: 9034329]
  18. J Cell Sci. 2004 Dec 15;117(Pt 26):6401-12 [PMID: 15561774]
  19. Science. 2006 Dec 1;314(5804):1458-61 [PMID: 17095657]
  20. EMBO J. 1994 Mar 15;13(6):1287-96 [PMID: 8137813]
  21. Chembiochem. 2006 Dec;7(12):1859-61 [PMID: 17086561]
  22. J Biol Chem. 2001 Feb 23;276(8):5841-5 [PMID: 11121396]
  23. J Biol Chem. 1996 Mar 8;271(10):5289-92 [PMID: 8621375]
  24. Cell. 2004 Jun 11;117(6):749-60 [PMID: 15186776]
  25. J Cell Biol. 2013 Feb 4;200(3):287-300 [PMID: 23382462]
  26. Angew Chem Int Ed Engl. 2008;47(52):10030-74 [PMID: 19072788]
  27. J Cell Biol. 2006 Jun 19;173(6):917-26 [PMID: 16769818]
  28. Arch Biochem Biophys. 1993 Aug 1;304(2):471-8 [PMID: 8346922]
  29. Nature. 1991 Oct 24;353(6346):769-72 [PMID: 1944536]
  30. Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10866-71 [PMID: 20534488]
  31. Physiol Rev. 2011 Jan;91(1):119-49 [PMID: 21248164]
  32. Mol Cell Biol. 1994 Jan;14(1):744-58 [PMID: 8264642]
  33. EMBO J. 2005 Apr 20;24(8):1491-501 [PMID: 15933719]
  34. Biochemistry. 2006 Nov 7;45(44):13183-92 [PMID: 17073440]
  35. Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12294-9 [PMID: 17640890]
  36. Mol Cell. 2003 Feb;11(2):483-94 [PMID: 12620235]
  37. Cell. 2010 Apr 30;141(3):497-508 [PMID: 20434987]
  38. J Biol Chem. 2009 May 8;284(19):13185-92 [PMID: 19240028]
  39. Mol Biol Cell. 2003 May;14(5):1882-99 [PMID: 12802062]
  40. Mol Biol Cell. 2009 Nov;20(22):4720-9 [PMID: 19759177]
  41. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14408-13 [PMID: 19666511]
  42. J Mol Biol. 2001 Nov 2;313(4):889-901 [PMID: 11697911]

MeSH Term

Animals
Cell Membrane
Dogs
Genetic Variation
HeLa Cells
Humans
Madin Darby Canine Kidney Cells
Models, Biological
Protein Structure, Tertiary
Protein Transport
rab GTP-Binding Proteins

Chemicals

rab GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0membraneRabHVDtargetingC-terminallocalizationdomainroleRab7interactionproteinGTPaseshypervariableRabsstudiesmechanismfunctionlinkerPEGylatedproteinsprenylationRab1Rab5Rab35complexPMIntracellulartraffickingrequirescorrectspecificposttranslationallymodifiedisoprenylmoietiesenableassociationmodelassertingHVD-directedcontestedpreviousremainelusiveelucidatesubstitutedregionunnaturalpolyethylenglycolPEGusingoximeligationundergonormalunderlininguniqueabilitymachineryprocessfamilydiversesequencesfunctionalanalysessemisyntheticdemonstratepreviouslyunderstooddispensableappearssimplyGTPaseN-terminalresiduesimportantlateendosomal/lysosomalapparentlydueinvolvementeffectorRab-interactinglysosomalpolybasicclusteressentialplasmapresumablyelectrostaticnegativelychargedlipidsfindingssuggestdictatedinvolvingGEFsGAPseffectorsmembranesvaryingextentspossiblybindingpartnersRILPchemicalmodificationsyntheticprobe

Similar Articles

Cited By (48)