Looking for the bird Kiss: evolutionary scenario in sauropsids.

Jérémy Pasquier, Anne-Gaëlle Lafont, Karine Rousseau, Bruno Quérat, Philippe Chemineau, Sylvie Dufour
Author Information
  1. Sylvie Dufour: Muséum National d'Histoire Naturelle, UMR Biology of Aquatic Organisms and Ecosystems (BOREA), CNRS 7208, IRD 207, UPMC, Sorbonne Universités, F-75231 Paris Cedex 05, France. sylvie.dufour@mnhn.fr.

Abstract

BACKGROUND: The neuropeptide Kiss and its receptor KissR are key-actors in the brain control of reproduction in mammals, where they are responsible for the stimulation of the activity of GnRH neurones. Investigation in other vertebrates revealed up to 3 Kiss and 4 KissR paralogs, originating from the two rounds of whole genome duplication in early vertebrates. In contrast, the absence of Kiss and KissR has been suggested in birds, as no homologs of these genes could be found in current genomic databases. This study aims at addressing the question of the existence, from an evolutionary perspective, of the Kisspeptin system in birds. It provides the first large-scale investigation of the Kisspeptin system in the sauropsid lineage, including ophidian, chelonian, crocodilian, and avian lineages.
RESULTS: Sauropsid Kiss and KissR genes were predicted from multiple genome and transcriptome databases by TBLASTN. Phylogenetic and syntenic analyses were performed to classify predicted sauropsid Kiss and KissR genes and to re-construct the evolutionary scenarios of both gene families across the sauropsid radiation.Genome search, phylogenetic and synteny analyses, demonstrated the presence of two Kiss genes (Kiss1 and Kiss2 types) and of two KissR genes (KissR1 and KissR4 types) in the sauropsid lineage. These four genes, also present in the mammalian lineage, would have been inherited from their common amniote ancestor. In contrast, synteny analyses supported that the other Kiss and KissR paralogs are missing in sauropsids as in mammals, indicating their absence in the amniote lineage. Among sauropsids, in the avian lineage, we demonstrated the existence of a Kiss2-like gene in three bird genomes. The divergence of these avian Kiss2-like sequences from those of other vertebrates, as well as their absence in the genomes of some other birds, revealed the processes of Kiss2 gene degeneration and loss in the avian lineage.
CONCLUSION: These findings contribute to trace back the evolutionary history of the Kisspeptin system in amniotes and sauropsids, and provide the first molecular evidence of the existence and fate of a Kiss gene in birds.

References

  1. Nat Rev Genet. 2010 Feb;11(2):166 [PMID: 20051987]
  2. Endocrinology. 2009 Jun;150(6):2837-46 [PMID: 19164475]
  3. Biol Reprod. 2010 Feb;82(2):313-9 [PMID: 19828777]
  4. Gen Comp Endocrinol. 2010 May 1;166(3):606-13 [PMID: 20064520]
  5. Reprod Domest Anim. 2010 Sep;45 Suppl 3:42-9 [PMID: 24417198]
  6. PLoS One. 2010 May 06;5(5):e10512 [PMID: 20463905]
  7. Endocrinology. 2010 Aug;151(8):3479-89 [PMID: 20501670]
  8. Annu Rev Neurosci. 1992;15:57-85 [PMID: 1575450]
  9. Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1294-301 [PMID: 22505735]
  10. Physiol Rev. 2012 Jul;92(3):1235-316 [PMID: 22811428]
  11. Front Endocrinol (Lausanne). 2012 Feb 22;3:28 [PMID: 22654859]
  12. N Engl J Med. 2003 Oct 23;349(17):1614-27 [PMID: 14573733]
  13. Gen Comp Endocrinol. 2010 Feb 1;165(3):438-55 [PMID: 19393655]
  14. PLoS Biol. 2010 Sep 07;8(9): [PMID: 20838655]
  15. Nat Rev Endocrinol. 2009 Oct;5(10):569-76 [PMID: 19707180]
  16. Biochem Biophys Res Commun. 2003 Dec 26;312(4):1357-63 [PMID: 14652023]
  17. Peptides. 2011 Oct;32(10):2091-7 [PMID: 21924307]
  18. Front Horm Res. 2010;39:13-24 [PMID: 20389082]
  19. Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1761-6 [PMID: 15665093]
  20. J Biol Chem. 2001 Sep 14;276(37):34631-6 [PMID: 11457843]
  21. Comp Biochem Physiol A Mol Integr Physiol. 2009 Jun;153(2):209-12 [PMID: 19232396]
  22. Gen Comp Endocrinol. 2012 Jan 15;175(2):234-43 [PMID: 22137912]
  23. Mol Pharmacol. 2009 Jul;76(1):58-67 [PMID: 19389922]
  24. PLoS One. 2012;7(11):e48931 [PMID: 23185286]
  25. Philos Trans R Soc Lond B Biol Sci. 2008 Dec 27;363(1512):3977-84 [PMID: 18852107]
  26. PLoS Biol. 2005 Oct;3(10):e314 [PMID: 16128622]
  27. Nature. 2004 Dec 9;432(7018):695-716 [PMID: 15592404]
  28. Bioinformatics. 2005 May 1;21(9):2104-5 [PMID: 15647292]
  29. Comp Biochem Physiol A Mol Integr Physiol. 2011 Aug;159(4):422-6 [PMID: 21554973]
  30. Gen Comp Endocrinol. 2012 Jul 1;177(3):305-14 [PMID: 22391238]
  31. Bioorg Med Chem. 2006 Nov 15;14(22):7595-603 [PMID: 16879969]
  32. Anim Sci J. 2013 May;84(5):369-381 [PMID: 23607315]
  33. Chromosome Res. 1998 Jun;6(4):307-13 [PMID: 9688521]
  34. Bioinformatics. 2010 Apr 15;26(8):1119-21 [PMID: 20185404]
  35. Front Endocrinol (Lausanne). 2012 Dec 26;3:173 [PMID: 23272003]
  36. J Endocrinol. 2012 Jul;214(1):79-85 [PMID: 22526494]
  37. J Fish Biol. 2010 Jan;76(1):161-82 [PMID: 20738704]
  38. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10714-9 [PMID: 17563351]
  39. Endocrinology. 2013 Nov;154(11):4270-80 [PMID: 23959935]
  40. J Neuroendocrinol. 2010 Jul;22(7):716-27 [PMID: 20456604]
  41. Endocrinology. 2007 Oct;148(10):4927-36 [PMID: 17595229]
  42. Peptides. 2009 Jan;30(1):26-33 [PMID: 18840491]
  43. FEBS Lett. 1999 Mar 5;446(1):103-7 [PMID: 10100623]
  44. N Engl J Med. 2008 Feb 14;358(7):709-15 [PMID: 18272894]
  45. Gen Comp Endocrinol. 2011 Aug 1;173(1):216-25 [PMID: 21679713]
  46. Anim Reprod Sci. 2012 Oct;134(3-4):203-9 [PMID: 22944168]
  47. Physiology (Bethesda). 2010 Aug;25(4):207-17 [PMID: 20699467]
  48. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15487-92 [PMID: 18832151]
  49. Biol Reprod. 2008 Oct;79(4):776-86 [PMID: 18509165]
  50. Nature. 2001 May 31;411(6837):613-7 [PMID: 11385580]
  51. Neurosci Lett. 2005 Jan 10;373(2):85-8 [PMID: 15567558]
  52. Nucleic Acids Res. 2009 May;37(9):e67 [PMID: 19339519]
  53. J Proteome Res. 2006 May;5(5):1162-7 [PMID: 16674105]
  54. Asian-Australas J Anim Sci. 2012 Sep;25(9):1229-36 [PMID: 25049685]
  55. Front Neurosci. 2012 Jan 24;6:3 [PMID: 22291614]
  56. J Endocrinol. 2007 Jan;192(1):3-15 [PMID: 17210738]
  57. Am J Physiol Endocrinol Metab. 2010 Feb;298(2):E296-303 [PMID: 19934405]
  58. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  59. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10972-6 [PMID: 12944565]
  60. J Fish Biol. 2010 Jan;76(1):129-60 [PMID: 20738703]
  61. Gen Comp Endocrinol. 2013 Sep 1;190:134-43 [PMID: 23756151]
  62. J Natl Cancer Inst. 1996 Dec 4;88(23):1731-7 [PMID: 8944003]
  63. J Clin Endocrinol Metab. 2010 May;95(5):2276-80 [PMID: 20237166]
  64. J Biol Chem. 2001 Aug 3;276(31):28969-75 [PMID: 11387329]

MeSH Term

Amino Acid Sequence
Animals
Avian Proteins
Biological Evolution
Birds
Humans
Kisspeptins
Molecular Sequence Data
Phylogeny
Receptors, G-Protein-Coupled
Reptiles
Sequence Alignment
Synteny

Chemicals

Avian Proteins
Kisspeptins
Receptors, G-Protein-Coupled

Word Cloud

Created with Highcharts 10.0.0KissKissRgeneslineagebirdsevolutionarysauropsidaviangenesauropsidsvertebratestwoabsenceexistenceKisspeptinsystemanalysesmammalsrevealedparalogsgenomecontrastdatabasesfirstpredictedsyntenydemonstratedKiss2typesamnioteKiss2-likebirdgenomesBACKGROUND:neuropeptidereceptorkey-actorsbraincontrolreproductionresponsiblestimulationactivityGnRHneuronesInvestigation34originatingroundswholeduplicationearlysuggestedhomologsfoundcurrentgenomicstudyaimsaddressingquestionperspectiveprovideslarge-scaleinvestigationincludingophidiancheloniancrocodilianlineagesRESULTS:SauropsidmultipletranscriptomeTBLASTNPhylogeneticsyntenicperformedclassifyre-constructscenariosfamiliesacrossradiationGenomesearchphylogeneticpresenceKiss1KissR1KissR4fouralsopresentmammalianinheritedcommonancestorsupportedmissingindicatingAmongthreedivergencesequenceswellprocessesdegenerationlossCONCLUSION:findingscontributetracebackhistoryamniotesprovidemolecularevidencefateLookingKiss:scenario

Similar Articles

Cited By