Application of microRNA and mRNA expression profiling on prognostic biomarker discovery for hepatocellular carcinoma.

Lin Wei, Baofeng Lian, Yuannv Zhang, Wei Li, Jianren Gu, Xianghuo He, Lu Xie
Author Information

Abstract

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most highly malignant and lethal cancers of the world. Its pathogenesis has been reported to be multi-factorial, and the molecular carcinogenesis of HCC can not be attributed to just a few individual genes. Based on the microRNA and mRNA expression profiling of normal liver tissues, pericancerous hepatocellular tissues and hepatocellular carcinoma tissues, we attempted to find prognosis related gene sets for HCC patients.
RESULTS: We identified differentially expressed genes (DEG) from three comparisons: Cancer/Normal, Cancer/Pericancerous and Pericancerous/Normal. GSEA (gene set enrichment analysis) were performed. Based on the enriched gene sets of GO terms, pathways and transcription factor targets, it was found that the genome instability and cell proliferation increased while the metabolism and differentiation decreased in HCC tissues. The expression profile of DEGs in each enriched gene set was used to correlate to the postoperative survival time of HCC patients. Nine gene sets were found to prognostic correlation. Furthermore, after substituting DEG-targeting-microRNA for DEG members of each gene set, two gene sets with the microRNA expression profiles were obtained that had prognostic potential.
CONCLUSIONS: The malignancy of HCC could be represented by gene sets, and pericancerous liver exhibits important characteristics of liver cancer. The expression level of gene sets not only in HCC but also in the pericancerous liver showed potential for prognosis implying an option for HCC prognosis at an early stage. Additionally, the gene-targeting-microRNA expression profiles also showed prognostic potential, demonstrating that the multi-factorial molecular pathogenesis of HCC is contributed by various genes and microRNAs.

References

  1. Lancet. 2012 Mar 31;379(9822):1245-55 [PMID: 22353262]
  2. Cell. 2009 Jul 10;138(1):63-77 [PMID: 19596235]
  3. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1736-40 [PMID: 8127874]
  4. Gastroenterology. 2012 Apr;142(4):957-966.e12 [PMID: 22202459]
  5. Gastroenterology. 2004 Sep;127(3):903-13 [PMID: 15362045]
  6. Nat Genet. 2002 Aug;31(4):339-46 [PMID: 12149612]
  7. Genes Chromosomes Cancer. 2011 Feb;50(2):122-35 [PMID: 21104785]
  8. Immunol Rev. 2000 Apr;174:172-91 [PMID: 10807516]
  9. Gastroenterology. 2007 Jun;132(7):2557-76 [PMID: 17570226]
  10. Am J Pathol. 2003 Aug;163(2):733-41 [PMID: 12875992]
  11. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  12. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  13. Br J Surg. 2008 May;95(5):611-9 [PMID: 18311747]
  14. Nucleic Acids Res. 2009 Jan;37(Database issue):D155-8 [PMID: 18957447]
  15. Nat Med. 2003 Apr;9(4):416-23 [PMID: 12640447]
  16. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2850-5 [PMID: 8610130]
  17. Dig Liver Dis. 2013 Mar;45(3):251-7 [PMID: 23266194]
  18. Clin Cancer Res. 2013 Sep 1;19(17):4780-91 [PMID: 23812667]
  19. Bioinformatics. 2011 Mar 15;27(6):879-80 [PMID: 21258062]
  20. Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53 [PMID: 18158296]
  21. Int J Comput Biol Drug Des. 2011;4(1):5-18 [PMID: 21330691]
  22. BMJ. 2009 Dec 04;339:b5039 [PMID: 19965932]
  23. Cancer Res. 2008 May 1;68(9):3108-14 [PMID: 18451135]
  24. Gastroenterology. 2004 Nov;127(5 Suppl 1):S35-50 [PMID: 15508101]
  25. Cell. 1988 Apr 8;53(1):37-43 [PMID: 3127059]
  26. Nucleic Acids Res. 2009 Oct;37(18):5969-80 [PMID: 19671526]
  27. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  28. J Epidemiol. 2011;21(6):401-16 [PMID: 22041528]
  29. Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8 [PMID: 17991681]
  30. Hepatology. 2010 Jul;52(1):164-73 [PMID: 20578260]
  31. Oncogene. 2008 Jan 24;27(5):565-73 [PMID: 17891185]
  32. Cancer Res. 2010 Dec 15;70(24):10202-12 [PMID: 21159642]
  33. Lancet Oncol. 2012 Aug;13(8):817-26 [PMID: 22738799]
  34. BMC Med Genet. 2008 Dec 16;9:109 [PMID: 19087248]
  35. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  36. Nat Struct Mol Biol. 2011 Sep 11;18(10):1139-46 [PMID: 21909094]
  37. PLoS One. 2013;8(1):e54082 [PMID: 23382867]
  38. Am J Hum Genet. 2006 Jan;78(1):78-88 [PMID: 16385451]
  39. RNA. 2008 Jun;14(6):1012-7 [PMID: 18426918]
  40. Int J Cancer. 2008 Dec 15;123(12):2808-15 [PMID: 18803288]
  41. Genomics. 1997 Feb 1;39(3):417-9 [PMID: 9119385]
  42. PLoS One. 2008;3(10):e3420 [PMID: 18923704]
  43. Cancer Cell. 2006 Aug;10(2):99-111 [PMID: 16904609]
  44. BMC Genomics. 2012;13 Suppl 8:S14 [PMID: 23282077]
  45. J Clin Invest. 2003 Aug;112(3):345-56 [PMID: 12865419]
  46. FEBS Lett. 2004 May 7;565(1-3):93-100 [PMID: 15135059]
  47. Oncogene. 2006 Apr 27;25(18):2601-14 [PMID: 16434974]
  48. World J Gastroenterol. 2007 Apr 28;13(16):2271-82 [PMID: 17511024]
  49. Hepatology. 2004 Apr;39(4):944-53 [PMID: 15057898]
  50. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  51. Int J Cancer. 2008 Oct 1;123(7):1616-22 [PMID: 18649363]
  52. J Biol Chem. 2002 May 17;277(20):17564-70 [PMID: 11875061]
  53. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]

MeSH Term

Biomarkers, Tumor
Carcinoma, Hepatocellular
Cell Differentiation
Chromosomes, Human, Pair 1
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Genomic Instability
Humans
Liver
Liver Neoplasms
Metabolism
MicroRNAs
Prognosis
RNA, Messenger

Chemicals

Biomarkers, Tumor
MicroRNAs
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0HCCgeneexpressionsetslivertissuesprognosticcarcinomagenesmicroRNApericanceroushepatocellularprognosissetpotentialpathogenesismulti-factorialmolecularBasedmRNAprofilingpatientsDEGenrichedfoundprofilesalsoshowedBACKGROUND:HepatocellularonehighlymalignantlethalcancersworldreportedcarcinogenesiscanattributedjustindividualnormalattemptedfindrelatedRESULTS:identifieddifferentiallyexpressedthreecomparisons:Cancer/NormalCancer/PericancerousPericancerous/NormalGSEAenrichmentanalysisperformedGOtermspathwaystranscriptionfactortargetsgenomeinstabilitycellproliferationincreasedmetabolismdifferentiationdecreasedprofileDEGsusedcorrelatepostoperativesurvivaltimeNinecorrelationFurthermoresubstitutingDEG-targeting-microRNAmemberstwoobtainedCONCLUSIONS:malignancyrepresentedexhibitsimportantcharacteristicscancerlevelimplyingoptionearlystageAdditionallygene-targeting-microRNAdemonstratingcontributedvariousmicroRNAsApplicationbiomarkerdiscovery

Similar Articles

Cited By