Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju Metabolic Disease Cohort (CMC) study.

Seung-Hwan Lee, Hyuk-Sang Kwon, Yong-Moon Park, Hee-Sung Ha, Seung Hee Jeong, Hae Kyung Yang, Jin-Hee Lee, Hyeon-Woo Yim, Moo-Il Kang, Won-Chul Lee, Ho-Young Son, Kun-Ho Yoon
Author Information
  1. Seung-Hwan Lee: Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea.
  2. Hyuk-Sang Kwon: Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, Seoul, Korea.
  3. Yong-Moon Park: Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America.
  4. Hee-Sung Ha: Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
  5. Seung Hee Jeong: Clinical Research Coordinating Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
  6. Hae Kyung Yang: Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea.
  7. Jin-Hee Lee: Catholic Institute of U-Healthcare, The Catholic University of Korea, Seoul, Korea.
  8. Hyeon-Woo Yim: Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Clinical Research Coordinating Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
  9. Moo-Il Kang: Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea.
  10. Won-Chul Lee: Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
  11. Ho-Young Son: Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea.
  12. Kun-Ho Yoon: Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea ; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea.

Abstract

BACKGROUND: To determine whether the TyG index, a product of the levels of triglycerides and fasting plasma glucose (FPG) might be a valuable marker for predicting future diabetes.
METHODS: A total of 5,354 nondiabetic subjects who had completed their follow-up visit for evaluating diabetes status were selected from a large cohort of middle-aged Koreans in the Chungju Metabolic Disease Cohort study. The risk of diabetes was assessed according to the baseline TyG index, calculated as ln[fasting triglycerides (mg/dL) × FPG (mg/dL)/2]. The median follow-up period was 4.6 years.
RESULTS: During the follow-up period, 420 subjects (7.8%) developed diabetes. The baseline values of the TyG index were significantly higher in these subjects compared with nondiabetic subjects (8.9 ± 0.6 vs. 8.6 ± 0.6; P<0.0001) and the incidence of diabetes increased in proportion to TyG index quartiles. After adjusting for age, gender, body mass index, waist circumference, systolic blood pressure, high-density lipoprotein (HDL)-cholesterol level, a family history of diabetes, smoking, alcohol drinking, education level and serum insulin level, the risk of diabetes onset was more than fourfold higher in the highest vs. the lowest quartile of the TyG index (relative risk, 4.095; 95% CI, 2.701-6.207). The predictive power of the TyG index was better than the triglyceride/HDL-cholesterol ratio or the homeostasis model assessment of insulin resistance.
CONCLUSIONS: The TyG index, a simple measure reflecting insulin resistance, might be useful in identifying individuals at high risk of developing diabetes.

References

  1. J Am Heart Assoc. 2012 Aug;1(4):e000869 [PMID: 23130155]
  2. Metabolism. 2012 Jan;61(1):30-6 [PMID: 21664631]
  3. JAMA. 2007 Jul 18;298(3):309-16 [PMID: 17635891]
  4. Clin Epidemiol. 2012;4:213-24 [PMID: 22936857]
  5. Diabetes Care. 2007 Jun;30(6):1544-8 [PMID: 17384342]
  6. Diabetes Care. 2008 Oct;31(10):2032-7 [PMID: 18591400]
  7. Lancet. 2006 Nov 11;368(9548):1681-8 [PMID: 17098087]
  8. Curr Vasc Pharmacol. 2011 May;9(3):258-70 [PMID: 21314632]
  9. Diabetes Metab J. 2011 Apr;35(2):107-16 [PMID: 21738892]
  10. N Engl J Med. 2002 Feb 7;346(6):393-403 [PMID: 11832527]
  11. J Clin Endocrinol Metab. 2010 Jul;95(7):3347-51 [PMID: 20484475]
  12. Metabolism. 2011 Dec;60(12):1673-6 [PMID: 21632070]
  13. Arch Intern Med. 2007 May 28;167(10):1068-74 [PMID: 17533210]
  14. Diabetes Care. 2009 Nov;32(11):2116-9 [PMID: 19720844]
  15. PLoS One. 2013 Jun 20;8(6):e66899 [PMID: 23818970]
  16. Diabetes Res Clin Pract. 2013 Sep;101(3):255-69 [PMID: 23647943]
  17. Diabetes Care. 2004 Sep;27(9):2204-10 [PMID: 15333485]
  18. Diabet Med. 2004 Jun;21(6):615-22 [PMID: 15154949]
  19. Ann Intern Med. 1990 Dec 15;113(12):909-15 [PMID: 2240915]
  20. Metab Syndr Relat Disord. 2008 Dec;6(4):299-304 [PMID: 19067533]
  21. Diabetes Metab J. 2013 Aug;37(4):233-9 [PMID: 23991400]
  22. Diabetes Care. 1997 Jul;20(7):1183-97 [PMID: 9203460]
  23. J Clin Invest. 1985 Jul;76(1):149-55 [PMID: 3894418]
  24. Diabetes Res Clin Pract. 2011 Sep;93(3):e98-e100 [PMID: 21665314]
  25. Diabetes. 2009 Apr;58(4):773-95 [PMID: 19336687]
  26. J Clin Endocrinol Metab. 2012 Mar;97(3):793-9 [PMID: 22174423]
  27. Lipids Health Dis. 2010 Aug 17;9:85 [PMID: 20712907]
  28. Annu Rev Nutr. 2002;22:325-46 [PMID: 12055349]
  29. Ann Intern Med. 2003 Nov 18;139(10):802-9 [PMID: 14623617]
  30. Diabetes Res Clin Pract. 2010 Jan;87(1):4-14 [PMID: 19896746]
  31. Diabetes Care. 2003 Nov;26(11):3160-7 [PMID: 14578255]
  32. N Engl J Med. 2005 Oct 6;353(14):1454-62 [PMID: 16207847]
  33. Metabolism. 2010 Feb;59(2):299-304 [PMID: 19796777]
  34. Diabetologia. 1985 Jul;28(7):412-9 [PMID: 3899825]
  35. Int J Clin Pract. 2013 Jul;67(7):665-72 [PMID: 23758445]
  36. Diabetes. 2003 Feb;52(2):463-9 [PMID: 12540622]

MeSH Term

Aged
Alcohol Drinking
Blood Glucose
Diabetes Mellitus, Type 2
Educational Status
Fasting
Female
Humans
Male
Middle Aged
Predictive Value of Tests
Prognosis
Prospective Studies
Republic of Korea
Risk Factors
Smoking
Triglycerides

Chemicals

Blood Glucose
Triglycerides

Word Cloud

Created with Highcharts 10.0.0diabetesindexTyGsubjectsrisk6triglyceridesfollow-uplevelinsulinproductFPGmightnondiabeticChungjuMetabolicDiseaseCohortstudybaselinemg/dLperiod4higher8±0vsresistanceBACKGROUND:determinewhetherlevelsfastingplasmaglucosevaluablemarkerpredictingfutureMETHODS:total5354completedvisitevaluatingstatusselectedlargecohortmiddle-agedKoreansassessedaccordingcalculatedln[fasting×/2]medianyearsRESULTS:42078%developedvaluessignificantlycompared9P<00001incidenceincreasedproportionquartilesadjustingagegenderbodymasswaistcircumferencesystolicbloodpressurehigh-densitylipoproteinHDL-cholesterolfamilyhistorysmokingalcoholdrinkingeducationserumonsetfourfoldhighestlowestquartilerelative09595%CI2701-6207predictivepowerbettertriglyceride/HDL-cholesterolratiohomeostasismodelassessmentCONCLUSIONS:simplemeasurereflectingusefulidentifyingindividualshighdevelopingPredictingdevelopmentusingglucose:CMC

Similar Articles

Cited By