Microbial community structure in lake and wetland sediments from a high Arctic polar desert revealed by targeted transcriptomics.

Magdalena K Stoeva, Stéphane Aris-Brosou, John Chételat, Holger Hintelmann, Philip Pelletier, Alexandre J Poulain
Author Information
  1. Magdalena K Stoeva: Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
  2. Stéphane Aris-Brosou: Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada.
  3. John Chételat: Environment Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada.
  4. Holger Hintelmann: Department of Chemistry, Trent University, Peterborough, Ontario, Canada.
  5. Philip Pelletier: Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
  6. Alexandre J Poulain: Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.

Abstract

While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake.

References

  1. Appl Environ Microbiol. 2001 Oct;67(10):4495-503 [PMID: 11571148]
  2. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  3. Mol Biol Evol. 2008 Jul;25(7):1253-6 [PMID: 18397919]
  4. BMC Bioinformatics. 2006 Aug 07;7:371 [PMID: 16893466]
  5. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3805-10 [PMID: 18316740]
  6. Appl Environ Microbiol. 2004 Nov;70(11):6559-68 [PMID: 15528519]
  7. Environ Sci Technol. 2013 Oct 15;47(20):11810-20 [PMID: 24024607]
  8. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  9. ISME J. 2011 May;5(5):879-95 [PMID: 21124488]
  10. Microbiology (Reading). 2002 Nov;148(Pt 11):3521-3530 [PMID: 12427943]
  11. Mol Biol Evol. 2007 Apr;24(4):982-9 [PMID: 17255121]
  12. Appl Environ Microbiol. 1996 Feb;62(2):668-75 [PMID: 8593069]
  13. Environ Microbiol. 2007 Nov;9(11):2870-84 [PMID: 17922769]
  14. PLoS One. 2012;7(8):e43346 [PMID: 22927959]
  15. Can J Microbiol. 2011 Apr;57(4):303-15 [PMID: 21491982]
  16. Electrophoresis. 1997 Dec;18(15):2714-23 [PMID: 9504803]
  17. Science. 2013 Mar 15;339(6125):1332-5 [PMID: 23393089]
  18. Appl Environ Microbiol. 2004 Aug;70(8):4971-9 [PMID: 15294837]
  19. Environ Sci Technol. 2010 Nov 15;44(22):8415-21 [PMID: 20973547]
  20. Environ Microbiol. 2004 Nov;6(11):1159-73 [PMID: 15479249]
  21. ISME J. 2012 May;6(5):1018-31 [PMID: 22094346]
  22. Nucleic Acids Res. 2007;35(21):7188-96 [PMID: 17947321]
  23. Nat Rev Microbiol. 2006 May;4(5):331-43 [PMID: 16715049]
  24. Environ Sci Technol. 2012 Aug 21;46(16):8748-55 [PMID: 22839429]
  25. Sci Total Environ. 2005 Apr 15;342(1-3):5-86 [PMID: 15866268]
  26. Appl Environ Microbiol. 1991 Jan;57(1):130-7 [PMID: 16348388]
  27. Int Microbiol. 2008 Sep;11(3):195-202 [PMID: 18843598]
  28. Bioinformatics. 2006 Jan 15;22(2):195-201 [PMID: 16301204]
  29. Science. 2007 Oct 5;318(5847):97-100 [PMID: 17916733]
  30. Appl Environ Microbiol. 2007 Mar;73(6):2016-9 [PMID: 17261512]
  31. Environ Sci Technol. 2011 Feb 1;45(3):964-70 [PMID: 21210676]
  32. PLoS One. 2010 Nov 30;5(11):e15101 [PMID: 21152087]
  33. Nat Methods. 2011 Dec 25;9(2):173-5 [PMID: 22198341]
  34. Appl Environ Microbiol. 1996 Feb;62(2):316-22 [PMID: 8593035]
  35. FEMS Microbiol Ecol. 2010 Jul 1;73(1):157-65 [PMID: 20455935]
  36. Environ Toxicol Chem. 2004 Jan;23(1):17-23 [PMID: 14768862]
  37. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4397-402 [PMID: 15738395]
  38. Appl Environ Microbiol. 2003 Sep;69(9):5483-91 [PMID: 12957937]
  39. Bioinformatics. 2011 Feb 15;27(4):592-3 [PMID: 21169378]
  40. Nucleic Acids Res. 2001 Jan 1;29(1):181-4 [PMID: 11125085]
  41. FEMS Microbiol Ecol. 2005 Jun 1;53(1):89-101 [PMID: 16329932]
  42. Syst Biol. 2006 Aug;55(4):539-52 [PMID: 16785212]
  43. Environ Sci Technol. 2011 Sep 15;45(18):7693-700 [PMID: 21875053]
  44. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W7-13 [PMID: 20435676]
  45. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  46. Environ Sci Technol. 2013 Mar 19;47(6):2441-56 [PMID: 23384298]
  47. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  48. Appl Environ Microbiol. 2003 Jun;69(6):3181-91 [PMID: 12788715]

MeSH Term

Arctic Regions
Base Sequence
Biodiversity
DNA Primers
Ecosystem
Geologic Sediments
Lakes
Polymerase Chain Reaction
Transcriptome
Water Microbiology
Wetlands

Chemicals

DNA Primers

Word Cloud

Created with Highcharts 10.0.0wetlandcyclinglakecommunitiessedimentsmethaneacrossdiversesppmicrobialfreshwaterstructureactivitypolardesertsedimentdepthstargetedtranscriptomicsanalysescharacterizedMicrobialgenebacterialshowsurfacestructuredenvironmentArchaeamethanogensplaykeyrolegeochemicalnutrientscontaminantsanaerobicecosystemsstillpoorlyunderstoodheterogeneousenvironmentslakeswetlandsaddressquestionperformedenvironmentaldiversitythreecorescollectedlocatedCornwallisIslandNUCanadabased16SrRNAtwofunctionaltranscripts:mcrAinvolvedarchaealglnAhousekeepingimplicatednitrogenmetabolismoverallmetabolichighestdeeperwithinBacterialhighlyfunctiondepthnearmostlyMcrAtranscriptactivecorrespondsdistincthigherpotentialMethanosarcinaMethanosaetagroupuncultureddominantMethanoregulapredominatecommunityhighArcticrevealed

Similar Articles

Cited By