Sparse multivariate autoregressive modeling for mild cognitive impairment classification.

Yang Li, Chong-Yaw Wee, Biao Jie, Ziwen Peng, Dinggang Shen
Author Information
  1. Yang Li: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Abstract

Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach.

References

  1. Trends Cogn Sci. 2004 Sep;8(9):418-25 [PMID: 15350243]
  2. Neuroimage. 2011 Apr 1;55(3):856-67 [PMID: 21236349]
  3. Neuroimage. 2011 Jun 1;56(3):1202-21 [PMID: 21182971]
  4. Behav Neurosci. 2013 Apr;127(2):184-92 [PMID: 23067384]
  5. Neuroimage. 2013 Dec;83:937-50 [PMID: 23872496]
  6. Biol Cybern. 2000 Jul;83(1):35-45 [PMID: 10933236]
  7. IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39 [PMID: 12575879]
  8. Radiology. 2009 Mar;250(3):856-66 [PMID: 19164119]
  9. J Neurosci. 2010 Jul 14;30(28):9477-87 [PMID: 20631176]
  10. Mov Disord. 2010 Apr 30;25(6):687-95 [PMID: 20437538]
  11. N Engl J Med. 2011 Jun 9;364(23):2227-34 [PMID: 21651394]
  12. PLoS One. 2012;7(3):e33182 [PMID: 22457741]
  13. Lancet. 2006 Apr 15;367(9518):1262-70 [PMID: 16631882]
  14. J Neurosci. 2010 Feb 10;30(6):2289-99 [PMID: 20147555]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041906 [PMID: 22680497]
  16. Eur Radiol. 2006 Jan;16(1):193-206 [PMID: 16402259]
  17. Neuroimage. 2009 Feb 1;44(3):893-905 [PMID: 18976716]
  18. Neurology. 2010 Apr 6;74(14):1136-42 [PMID: 20368633]
  19. Neuroimage. 2011 Feb 1;54(3):1812-22 [PMID: 20970508]
  20. J Alzheimers Dis. 2010;22(1):267-84 [PMID: 20847400]
  21. Neuroimage. 2012 Sep;62(3):2021-33 [PMID: 22677149]
  22. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):969-81 [PMID: 16087441]
  23. BMC Syst Biol. 2009 Apr 22;3:41 [PMID: 19386091]
  24. Neuroimage. 2003 Aug;19(4):1477-91 [PMID: 12948704]
  25. J Neurosci Methods. 2013 Jan 30;212(2):181-9 [PMID: 23085280]
  26. IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):162-6 [PMID: 17108391]
  27. Ann Neurol. 2001 Mar;49(3):355-61 [PMID: 11261510]
  28. Neuroimage. 2004 Jul;22(3):1023-34 [PMID: 15219575]
  29. J Neurol Neurosurg Psychiatry. 2012 Feb;83(2):188-94 [PMID: 21890574]
  30. J Alzheimers Dis. 2011;27(2):453-62 [PMID: 21841261]
  31. Neuroimage. 1995 Jun;2(2):166-72 [PMID: 9343599]
  32. Arch Neurol. 2004 Jan;61(1):59-66 [PMID: 14732621]
  33. Brain Res. 2009 Sep 15;1289:22-9 [PMID: 19595679]
  34. Acad Radiol. 2012 May;19(5):512-7 [PMID: 22342652]
  35. Arch Neurol. 1999 Mar;56(3):303-8 [PMID: 10190820]
  36. Lancet. 2001 Jul 21;358(9277):201-5 [PMID: 11476837]
  37. Med Image Anal. 2006 Oct;10(5):740-51 [PMID: 16887376]
  38. Neuroinformatics. 2004;2(2):145-62 [PMID: 15319512]
  39. J Neurosci Methods. 2011 Mar 15;196(1):151-8 [PMID: 21184781]
  40. Neuroimage. 2012 Jan 16;59(2):895-907 [PMID: 21992749]
  41. Hum Brain Mapp. 2009 Apr;30(4):1361-73 [PMID: 18537116]
  42. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  43. Behav Brain Res. 2009 Jan 30;197(1):103-8 [PMID: 18786570]
  44. Magn Reson Imaging. 2003 Dec;21(10):1251-61 [PMID: 14725933]
  45. Brain Struct Funct. 2014 Mar;219(2):641-56 [PMID: 23468090]
  46. Neuroimage. 2010 Oct 1;52(4):1444-55 [PMID: 20472076]
  47. Neuroimage. 2009 Aug 15;47(2):549-63 [PMID: 19398022]
  48. Neuroimage. 2011 Jan 15;54(2):875-91 [PMID: 20817103]
  49. Radiology. 2009 Mar;250(3):821-9 [PMID: 19244049]
  50. Neuroinformatics. 2004;2(2):239-50 [PMID: 15319519]
  51. Neuroimage. 2011 Sep 15;58(2):296-302 [PMID: 19786106]
  52. J Psychiatr Res. 2013 Sep;47(9):1264-72 [PMID: 23777938]
  53. Brain Struct Funct. 2012 Jan;217(1):115-25 [PMID: 21667303]
  54. Neurosci Lett. 2008 Jun 13;438(1):111-5 [PMID: 18455308]
  55. Neuroimage. 2012 Feb 1;59(3):2045-56 [PMID: 22019883]
  56. Front Hum Neurosci. 2013 Oct 17;7:670 [PMID: 24151458]
  57. IEEE Trans Neural Netw. 2007 Jan;18(1):306-10 [PMID: 17278482]
  58. IEEE Trans Neural Netw. 1991;2(2):302-9 [PMID: 18276384]
  59. IEEE Trans Syst Man Cybern B Cybern. 2004 Apr;34(2):898-911 [PMID: 15376838]
  60. Neuroradiology. 2012 Nov;54(11):1195-206 [PMID: 22527687]
  61. PLoS One. 2011;6(10):e25546 [PMID: 22022410]
  62. Neural Netw. 2003 Nov;16(9):1261-75 [PMID: 14622883]
  63. Neurobiol Aging. 2012 Apr;33(4):825.e25-36 [PMID: 21782287]
  64. Neuroimage. 2010 Mar;50(1):48-55 [PMID: 20006713]
  65. Methods. 2008 Apr;44(4):338-47 [PMID: 18374277]
  66. Neuroimage. 2007 Jul 15;36(4):1189-99 [PMID: 17512218]
  67. Parkinsonism Relat Disord. 2009 Mar;15(3):187-95 [PMID: 18573676]
  68. Cereb Cortex. 2000 Feb;10(2):127-41 [PMID: 10667981]
  69. J Int Neuropsychol Soc. 2012 Jan;18(1):39-48 [PMID: 22005016]
  70. Hum Brain Mapp. 2007 Oct;28(10):967-78 [PMID: 17133390]
  71. IEEE Trans Biomed Eng. 2009 Jun;56(6):1606-16 [PMID: 19174333]
  72. Neuroimage. 2012 Aug 15;62(2):1257-66 [PMID: 22248579]
  73. Arch Neurol. 2001 Dec;58(12):1985-92 [PMID: 11735772]
  74. Med Image Comput Comput Assist Interv. 2008;11(Pt 2):905-13 [PMID: 18982691]
  75. Neuroimage. 2009 Oct 1;47(4):1277-87 [PMID: 19285145]
  76. Neuroimage. 2012 Apr 2;60(2):1106-16 [PMID: 22270352]
  77. Cereb Cortex. 2012 Jan;22(1):158-65 [PMID: 21616982]
  78. Neuroimage. 2007 Sep 1;37(3):749-60 [PMID: 17644415]
  79. IEEE Trans Med Imaging. 2008 Aug;27(8):1003-17 [PMID: 18672419]
  80. Neuroimage. 2003 Jul;19(3):1085-94 [PMID: 12880834]
  81. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  82. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 [PMID: 15070770]
  83. Neuroreport. 2002 Oct 28;13(15):1939-43 [PMID: 12395096]
  84. Brain. 2012 May;135(Pt 5):1498-507 [PMID: 22418737]
  85. J Cogn Neurosci. 2004 Dec;16(10):1854-63 [PMID: 15701234]
  86. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 [PMID: 18584043]
  87. IEEE Trans Med Imaging. 2011 Jul;30(7):1365-80 [PMID: 21335308]
  88. Neurobiol Aging. 2012 Feb;33(2):427.e15-30 [PMID: 21272960]
  89. Neuroimage. 2010 Jul 1;51(3):1057-70 [PMID: 20226255]
  90. PLoS One. 2011;6(7):e21935 [PMID: 21818280]
  91. PLoS One. 2012;7(5):e37828 [PMID: 22666397]

Grants

  1. R01 EB008374/NIBIB NIH HHS
  2. R01 EB006733/NIBIB NIH HHS
  3. R01 AG041721/NIA NIH HHS
  4. K23 AG028982/NIA NIH HHS
  5. AG042599/NIA NIH HHS
  6. EB009634/NIBIB NIH HHS
  7. R01 EB009634/NIBIB NIH HHS
  8. L30-AG029001/NIA NIH HHS
  9. P30 AG028377-02/NIA NIH HHS
  10. P30 AG028377/NIA NIH HHS
  11. EB008374/NIBIB NIH HHS
  12. K23-AG028982/NIA NIH HHS
  13. L30 AG029001/NIA NIH HHS
  14. R01 AG042599/NIA NIH HHS
  15. AG041721/NIA NIH HHS
  16. EB006733/NIBIB NIH HHS
  17. R01 MH100217/NIMH NIH HHS

MeSH Term

Aged
Algorithms
Brain
Brain Mapping
Cognitive Dysfunction
Female
Humans
Linear Models
Magnetic Resonance Imaging
Male
Multivariate Analysis
Nerve Net

Word Cloud

Created with Highcharts 10.0.0connectivitymodelingfunctionalclassificationnetworkfMRIcognitiveeffectivebrainregionsMARgyrusderiveddirectedsparsedatamultivariateautoregressivetechniqueusedcausalitymildimpairmentcingulate%Brainmagneticresonanceimagingbecomingincreasinglyprevalentresearchesrelatedperceptualprocessescapabilitydetectcausalhighlydesirableunderstandingcooperativenatureparticularlyultimategoalobtaingoodperformancecontrol-patientbiologicalmeaningfulinterpretationsUnderstandinginteractionsviachallengingtaskSincemanygeneticbiomedicalnetworksintrinsicallyincorporatingsparsitypropertycanmakemodelsbiologicallyplausibleAccordinglyproposeresting-statebasedwidelycharacterizetemporalinformationdynamicsystemsallowsidentificationusingGrangerconceptreducingspuriousassessmentinteractionforwardorthogonalleastsquaresOLSregressionalgorithmconstructmodelapplyingproposedMCIidentifyseveraldiscriminativeincludingmiddleposteriorlingualcaudatelineresultsreportedpreviousfindingsrelativelyhighaccuracy9189alsoachievedincrement54comparedfully-connectednon-directionalPearson-correlation-basedapproachSparse

Similar Articles

Cited By