Cryptic genetic variation: evolution's hidden substrate.

Annalise B Paaby, Matthew V Rockman
Author Information
  1. Annalise B Paaby: Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA.
  2. Matthew V Rockman: Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA.

Abstract

Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.

References

  1. Genetics. 2012 Dec;192(4):1533-42 [PMID: 23086219]
  2. Science. 1996 Jan 12;271(5246):200-3 [PMID: 8539619]
  3. Nature. 1998 Nov 26;396(6709):336-42 [PMID: 9845070]
  4. PLoS Genet. 2007 Mar 30;3(3):e43 [PMID: 17397257]
  5. BMC Genet. 2012 May 18;13:38 [PMID: 22606935]
  6. Heredity (Edinb). 2010 Nov;105(5):473-82 [PMID: 20502478]
  7. Dev Biol. 2011 Sep 15;357(2):419-27 [PMID: 21693113]
  8. Genetics. 1998 Jul;149(3):1435-50 [PMID: 9649532]
  9. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10528-32 [PMID: 12082173]
  10. Evolution. 2004 Oct;58(10):2111-32 [PMID: 15562679]
  11. Genetics. 2004 Dec;168(4):2271-84 [PMID: 15611191]
  12. Heredity (Edinb). 2007 Jun;98(6):349-59 [PMID: 17327874]
  13. Genes Dev. 2008 Nov 1;22(21):3064-75 [PMID: 18981482]
  14. Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7 [PMID: 15659551]
  15. Evolution. 1996 Jun;50(3):1042-1051 [PMID: 28565298]
  16. Genetics. 1998 Aug;149(4):2119-33 [PMID: 9691063]
  17. Nature. 2005 May 5;435(7038):95-8 [PMID: 15875023]
  18. Genetics. 2006 Mar;172(3):1985-91 [PMID: 16387877]
  19. Theor Popul Biol. 2005 Nov;68(3):179-96 [PMID: 16122771]
  20. Adv Exp Med Biol. 2012;751:79-91 [PMID: 22821454]
  21. Evolution. 2011 Oct;65(10):2830-42 [PMID: 21967425]
  22. PLoS Genet. 2010 Mar 12;6(3):e1000877 [PMID: 20300655]
  23. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11413-5 [PMID: 1763055]
  24. Lancet. 2011 Feb 12;377(9765):557-67 [PMID: 21295846]
  25. Evolution. 2010 Mar 1;64(3):675-93 [PMID: 19817852]
  26. Nature. 2003 Jul 31;424(6948):549-52 [PMID: 12891357]
  27. Trends Genet. 2013 Jun;29(6):358-66 [PMID: 23453263]
  28. Genetics. 2000 Jan;154(1):213-27 [PMID: 10628982]
  29. Dev Biol. 2004 Feb 15;266(2):322-33 [PMID: 14738880]
  30. Evol Dev. 2008 May-Jun;10(3):360-74 [PMID: 18460097]
  31. Evolution. 2013 Dec;67(12):3501-11 [PMID: 24299403]
  32. BMC Evol Biol. 2012 Feb 27;12:25 [PMID: 22369091]
  33. Development. 2000 Feb;127(4):667-77 [PMID: 10648226]
  34. G3 (Bethesda). 2014 Feb 19;4(2):265-76 [PMID: 24347628]
  35. Evolution. 1988 May;42(3):441-454 [PMID: 28564006]
  36. Circ Cardiovasc Genet. 2012 Jun;5(3):293-300 [PMID: 22534315]
  37. J Evol Biol. 2013 Jun;26(6):1341-52 [PMID: 23517061]
  38. Curr Biol. 2010 Sep 14;20(17):1562-7 [PMID: 20797865]
  39. Nature. 1959 Jun 13;183(4676):1654-5 [PMID: 13666847]
  40. Nat Rev Genet. 2008 Dec;9(12):965-74 [PMID: 18957969]
  41. Ann N Y Acad Sci. 2008;1133:187-203 [PMID: 18559822]
  42. Mol Ecol. 2013 Feb;22(3):699-708 [PMID: 22420446]
  43. Genetics. 2008 Aug;179(4):2135-46 [PMID: 18689893]
  44. Nature. 2011 Dec 07;480(7376):250-3 [PMID: 22158248]
  45. Trends Ecol Evol. 1997 Aug;12(8):307-12 [PMID: 21238086]
  46. Curr Biol. 2007 Nov 20;17(22):1925-37 [PMID: 18024125]
  47. Curr Biol. 2007 Mar 6;17(5):R172-4 [PMID: 17339017]
  48. Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19910-4 [PMID: 19066216]
  49. Proc Biol Sci. 2010 Jul 7;277(1690):2049-57 [PMID: 20200026]
  50. Trends Genet. 2010 Sep;26(9):406-14 [PMID: 20598394]
  51. Genet Res (Camb). 2009 Dec;91(6):373-82 [PMID: 19968911]
  52. Science. 2006 Feb 3;311(5761):650-2 [PMID: 16456077]
  53. Genetica. 2007 Jan;129(1):45-55 [PMID: 17109184]
  54. J Anim Breed Genet. 1997 Jan 12;114(1-6):163-75 [PMID: 21395812]
  55. Nat Genet. 2006 Apr;38(4):418-20 [PMID: 16532011]
  56. Nat Rev Genet. 2009 Feb;10(2):134-40 [PMID: 19119265]
  57. Genetics. 2005 Apr;169(4):2335-52 [PMID: 15716498]
  58. Genetics. 2001 Feb;157(2):875-84 [PMID: 11157004]
  59. Curr Biol. 2003 Oct 28;13(21):1888-93 [PMID: 14588245]
  60. PLoS Biol. 2012 Jan;10(1):e1001230 [PMID: 22235190]
  61. Mol Cell Biol. 1989 Sep;9(9):3919-30 [PMID: 2674684]
  62. Genetics. 2009 Mar;181(3):1065-76 [PMID: 19064709]
  63. PLoS Genet. 2012;8(4):e1002644 [PMID: 22511884]
  64. Science. 2010 Apr 23;328(5977):469 [PMID: 20413493]
  65. PLoS Genet. 2013;9(8):e1003661 [PMID: 23935530]
  66. Theor Appl Genet. 2006 Nov;113(8):1551-61 [PMID: 16988816]
  67. PLoS Genet. 2013;9(8):e1003733 [PMID: 23990806]
  68. BMC Biol. 2012 Feb 27;10:14 [PMID: 22369621]
  69. Nature. 2010 Jul 22;466(7305):490-3 [PMID: 20512118]
  70. Genetics. 1981 Mar-Apr;97(3-4):639-66 [PMID: 7297851]
  71. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5869-74 [PMID: 16581913]
  72. Evolution. 2006 Sep;60(9):1763-76 [PMID: 17089962]
  73. Nature. 2011 Jun 2;474(7349):92-5 [PMID: 21637259]
  74. Aging Cell. 2003 Apr;2(2):123-30 [PMID: 12882325]
  75. Lancet. 2002 Nov 2;360(9343):1347-60 [PMID: 12423980]
  76. Genetics. 2007 Jan;175(1):411-20 [PMID: 17028346]
  77. Nature. 2002 Jun 6;417(6889):618-24 [PMID: 12050657]
  78. Proc Biol Sci. 2010 Dec 7;277(1700):3569-78 [PMID: 20573627]
  79. Evolution. 2011 Apr;65(4):1203-11 [PMID: 21463296]
  80. Bioessays. 2000 Dec;22(12):1095-105 [PMID: 11084625]
  81. Nat Rev Genet. 2002 Oct;3(10):779-89 [PMID: 12360236]
  82. Nat Rev Genet. 2004 Sep;5(9):681-90 [PMID: 15372091]
  83. Nature. 2010 Feb 4;463(7281):662-5 [PMID: 20062045]
  84. Bioessays. 2006 Sep;28(9):868-73 [PMID: 16937342]
  85. Genetics. 2013 Apr;193(4):1209-20 [PMID: 23335336]
  86. Genetica. 2007 Jan;129(1):57-70 [PMID: 16912839]
  87. Mol Ecol. 2013 Mar;22(5):1356-65 [PMID: 23110557]
  88. Trends Ecol Evol. 2009 Jun;24(6):305-11 [PMID: 19328588]
  89. Genetics. 2003 Sep;165(1):353-65 [PMID: 14504242]
  90. Heredity (Edinb). 2008 Feb;100(2):132-40 [PMID: 17167519]
  91. Science. 2013 Dec 13;342(6164):1372-5 [PMID: 24337296]
  92. Science. 2010 Dec 24;330(6012):1820-4 [PMID: 21205668]
  93. Evol Dev. 2001 Mar-Apr;3(2):109-19 [PMID: 11341673]
  94. Genome Biol Evol. 2012;4(11):1061-79 [PMID: 23019066]
  95. Ann N Y Acad Sci. 2010 Dec;1214:57-69 [PMID: 21175684]
  96. Curr Biol. 2007 Jan 23;17(2):103-14 [PMID: 17240335]
  97. Mol Ecol. 2013 Mar;22(5):1187-9 [PMID: 23437837]
  98. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15553-9 [PMID: 22949659]
  99. Annu Rev Public Health. 2010;31:21-36 [PMID: 20070199]
  100. Genetics. 2002 Jan;160(1):333-42 [PMID: 11805068]
  101. Nat Rev Genet. 2008 Nov;9(11):855-67 [PMID: 18852697]

Grants

  1. R01 GM089972/NIGMS NIH HHS
  2. R01GM089972/NIGMS NIH HHS

MeSH Term

Adaptation, Biological
Animals
Epigenesis, Genetic
Epistasis, Genetic
Evolution, Molecular
Gene-Environment Interaction
Genetic Variation
Humans
Models, Genetic
Phenotype
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0CGVCrypticgeneticcanevolutionchangepotentialhumanpopulationsrolevariationinvisiblenormalconditionsfuelcircumstancestheoryrepresentmassivecacheadaptivepooldeleteriousallelesneedconstantsuppressionemergesneutralselectiveprocessesmayinformrespondfacilitatesadaptationexperimentalsettingsimportantrealworld?reviewempiricalsupportwidespreadnaturalincludingemergingdiseasesgrowingevidencecontributionvariation:evolution'shiddensubstrate

Similar Articles

Cited By