Transcriptome analysis of silkworm, Bombyx mori, during early response to Beauveria bassiana challenges.

Chengxiang Hou, Guangxing Qin, Ting Liu, Tao Geng, Kun Gao, Zhonghua Pan, Heying Qian, Xijie Guo
Author Information
  1. Chengxiang Hou: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China.
  2. Guangxing Qin: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China.
  3. Ting Liu: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China.
  4. Tao Geng: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.
  5. Kun Gao: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.
  6. Zhonghua Pan: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.
  7. Heying Qian: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China.
  8. Xijie Guo: Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China.

Abstract

Host-pathogen interactions are complex processes and it is a central challenge to reveal these interactions. Fungal infection of silkworm, Bombyx mori, may induce a variety of responsive reaction. However, little is known about the molecular mechanism of silkworm immune response against the fungal infection. To obtain an overview of the interaction between silkworm and an entomopathogenic fungus Beauveria bassiana, Digital Gene Expression profiling, a tag based high-throughput transcriptome sequencing method, was employed to screen and identify differentially expressed genes (DEGs, FDR ≤ 0.001, ∣log2ratio∣ ≥ 1) of silkworm larvae during early response against B. bassiana infection. Total 1430 DEGs including 960 up-regulated and 470 down-regulated ones were identified, of which 627 DEGs can be classified into GO categories by Gene Ontology (GO) analysis. KEGG pathways analysis of these DEGs suggested that many biological processes, such as defense and response, signal transduction, phagocytosis, regulation of gene expression, RNA splicing, biosynthesis and metabolism, protein transport etc. were involved in the interaction between the silkworm and B. bassiana. A number of differentially expressed fungal genes were also identified by mapping the sequencing tags to B. bassiana genome. These results provided new insights to the molecular mechanism of silkworm immune response to B. bassiana infection.

References

  1. Cell Stress Chaperones. 2010 Jan;15(1):25-37 [PMID: 19472075]
  2. Nucleic Acids Res. 2003 May 15;31(10):2534-43 [PMID: 12736302]
  3. J Gen Virol. 2002 Jul;83(Pt 7):1565-1572 [PMID: 12075074]
  4. J Biol Chem. 2008 Sep 12;283(37):25316-25323 [PMID: 18628205]
  5. Carbohydr Polym. 2013 Feb 15;92(2):1302-7 [PMID: 23399158]
  6. Nucleic Acids Res. 2008 Dec;36(21):e141 [PMID: 18927111]
  7. Biosci Biotechnol Biochem. 2005 Jun;69(6):1178-85 [PMID: 15973050]
  8. Insect Biochem Mol Biol. 2001 Mar 15;31(4-5):407-13 [PMID: 11222950]
  9. Pharmacogenomics. 2005 Jun;6(4):373-82 [PMID: 16004555]
  10. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  11. Cell Mol Immunol. 2006 Aug;3(4):255-61 [PMID: 16978533]
  12. Retrovirology. 2009 Feb 04;6:11 [PMID: 19193229]
  13. PLoS Pathog. 2008 Oct 03;4(10):e1000168 [PMID: 18833296]
  14. J Biol Chem. 2007 Apr 20;282(16):11742-9 [PMID: 17317663]
  15. Cell Stress Chaperones. 2000 Nov;5(5):443-51 [PMID: 11189450]
  16. Virus Res. 2010 Feb;147(2):166-75 [PMID: 19883703]
  17. J Biol Chem. 2009 Jul 17;284(29):19474-81 [PMID: 19473968]
  18. Annu Rev Entomol. 2005;50:71-100 [PMID: 15355234]
  19. Mol Biol Rep. 2010 Mar;37(3):1657-64 [PMID: 19533415]
  20. J Virol. 2004 Sep;78(18):9697-704 [PMID: 15331702]
  21. Insect Biochem Mol Biol. 2002 Oct;32(10):1295-309 [PMID: 12225920]
  22. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12442-7 [PMID: 19590012]
  23. Insect Mol Biol. 2009 Feb;18(1):71-5 [PMID: 19196348]
  24. Oncogene. 2003 Sep 1;22(37):5755-73 [PMID: 12947384]
  25. Mol Cell Biol. 2008 Jul;28(13):4331-41 [PMID: 17682055]
  26. Sci Rep. 2012;2:483 [PMID: 22761991]
  27. Dev Comp Immunol. 2010 Feb;34(2):93-6 [PMID: 19723534]
  28. Mol Biol Rep. 2010 Apr;37(4):1801-14 [PMID: 19597962]
  29. FEBS Lett. 2007 Jul 31;581(19):3665-74 [PMID: 17467701]
  30. Semin Cell Dev Biol. 2009 Jul;20(5):590-9 [PMID: 19465141]
  31. PLoS One. 2012;7(2):e31045 [PMID: 22359564]
  32. BMC Genomics. 2010 Feb 22;11:124 [PMID: 20175885]
  33. J Leukoc Biol. 2008 Mar;83(3):489-92 [PMID: 18156188]
  34. J Insect Physiol. 2006 Sep;52(9):936-42 [PMID: 16876189]
  35. J Leukoc Biol. 2009 Jun;85(6):905-10 [PMID: 19276179]
  36. Mol Biol Rep. 2011 Jan;38(1):333-41 [PMID: 20349281]
  37. J Biosci. 2010 Mar;35(1):127-60 [PMID: 20413917]
  38. Exp Appl Acarol. 2008 Mar;44(3):199-212 [PMID: 18357505]
  39. Trends Microbiol. 1996 May;4(5):197-203 [PMID: 8727600]
  40. Insect Biochem Mol Biol. 1997 Aug-Sep;27(8-9):721-8 [PMID: 9443372]
  41. Dev Comp Immunol. 2008;32(5):585-95 [PMID: 17981328]
  42. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13705-10 [PMID: 12359879]
  43. J Virol. 2002 May;76(9):4666-70 [PMID: 11932435]
  44. Mol Immunol. 2009 Sep;46(15):2918-30 [PMID: 19631987]
  45. Genomics. 2009 Aug;94(2):138-45 [PMID: 19389468]
  46. Genome. 2005 Oct;48(5):802-10 [PMID: 16391686]
  47. Genomics. 2013 Apr;101(4):256-62 [PMID: 23434630]
  48. Gene. 2011 Sep 15;484(1-2):35-41 [PMID: 21664260]
  49. J Biol Chem. 2002 Jun 7;277(23):20847-53 [PMID: 11912201]
  50. J Biol Chem. 2002 Apr 26;277(17):15028-34 [PMID: 11836257]
  51. Mol Biol Rep. 2010 Feb;37(2):875-92 [PMID: 19672692]
  52. Insect Biochem Mol Biol. 2005 Aug;35(8):931-43 [PMID: 15944088]

MeSH Term

Animals
Beauveria
Bombyx
Cluster Analysis
Expressed Sequence Tags
Gene Expression Profiling
Gene Expression Regulation
Host-Pathogen Interactions
Reproducibility of Results
Signal Transduction
Time Factors
Transcriptome

Word Cloud

Created with Highcharts 10.0.0silkwormbassianaresponseinfectionDEGsBanalysisinteractionsprocessesBombyxmorimolecularmechanismimmunefungalinteractionBeauveriaGenesequencingdifferentiallyexpressedgenesearlyidentifiedGOHost-pathogencomplexcentralchallengerevealFungalmayinducevarietyresponsivereactionHoweverlittleknownobtainoverviewentomopathogenicfungusDigitalExpressionprofilingtagbasedhigh-throughputtranscriptomemethodemployedscreenidentifyFDR0001∣log2ratio∣1larvaeTotal1430including960up-regulated470down-regulatedones627canclassifiedcategoriesOntologyKEGGpathwayssuggestedmanybiologicaldefensesignaltransductionphagocytosisregulationgeneexpressionRNAsplicingbiosynthesismetabolismproteintransportetcinvolvednumberalsomappingtagsgenomeresultsprovidednewinsightsTranscriptomechallenges

Similar Articles

Cited By