An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria.

Georgina Cox, Kalinka Koteva, Gerard D Wright
Author Information
  1. Georgina Cox: Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada.
  2. Kalinka Koteva: Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada.
  3. Gerard D Wright: Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada wrightge@mcmaster.ca.

Abstract

OBJECTIVES: An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli.
METHODS: E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation.
RESULTS: The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity.
CONCLUSIONS: Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives.

Keywords

References

  1. Nature. 2011 Nov 27;480(7378):565-9 [PMID: 22121023]
  2. Infect Control Hosp Epidemiol. 2011 Jan;32(1):20-5 [PMID: 21133793]
  3. J Mol Microbiol Biotechnol. 2001 Apr;3(2):225-36 [PMID: 11321578]
  4. J Antibiot (Tokyo). 1984 Apr;37(4):344-53 [PMID: 6704208]
  5. Biochemistry. 1974 Jul 30;13(16):3315-30 [PMID: 4842277]
  6. J Mol Biol. 1988 Jul 5;202(1):45-58 [PMID: 3050121]
  7. Antimicrob Agents Chemother. 2010 Apr;54(4):1393-403 [PMID: 20065048]
  8. Antimicrob Agents Chemother. 2010 Oct;54(10):4389-93 [PMID: 20696879]
  9. Antimicrob Agents Chemother. 2010 Jan;54(1):333-40 [PMID: 19884373]
  10. J Antimicrob Chemother. 1998 Nov;42(5):597-603 [PMID: 9848443]
  11. Genetics. 2000 Dec;156(4):1471-81 [PMID: 11102350]
  12. J Antimicrob Chemother. 2011 Sep;66(9):1963-71 [PMID: 21685488]
  13. Nature. 1965 Jul 24;207(995):417-8 [PMID: 4957347]
  14. J Biomol Screen. 1999;4(2):67-73 [PMID: 10838414]
  15. Microbiol Rev. 1992 Sep;56(3):395-411 [PMID: 1406489]
  16. Diagn Microbiol Infect Dis. 2009 Apr;63(4):455-8 [PMID: 19302929]
  17. J Antimicrob Chemother. 2007 Jun;59(6):1261-4 [PMID: 16971414]
  18. J Antimicrob Chemother. 1986 Nov;18(5):557-63 [PMID: 3027012]
  19. ACS Chem Biol. 2013 Jan 18;8(1):226-33 [PMID: 23062620]
  20. Curr Opin Microbiol. 2009 Oct;12(5):512-9 [PMID: 19664953]
  21. Int J Med Microbiol. 2013 Aug;303(6-7):287-92 [PMID: 23499305]
  22. J Antimicrob Chemother. 2007 Dec;60(6):1206-15 [PMID: 17878146]
  23. PLoS One. 2013;8(3):e60666 [PMID: 23544160]
  24. Nat Chem Biol. 2011 Jun;7(6):348-50 [PMID: 21516114]
  25. Cancer Res. 1979 Dec;39(12):4816-22 [PMID: 498110]
  26. J Bacteriol. 1993 Oct;175(19):6299-313 [PMID: 8407802]
  27. Antimicrob Agents Chemother. 2006 Nov;50(11):3562-7 [PMID: 16940057]
  28. BMJ. 2007 Jul 28;335(7612):177 [PMID: 17656528]
  29. N Engl J Med. 2010 May 13;362(19):1804-13 [PMID: 20463340]
  30. J Antibiot (Tokyo). 1991 Jun;44(6):635-45 [PMID: 2071489]
  31. JAMA. 2010 Aug 11;304(6):641-8 [PMID: 20699455]
  32. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  33. Cell. 2001 Mar 23;104(6):901-12 [PMID: 11290327]
  34. J Antimicrob Chemother. 2003 Jul;52(1):1 [PMID: 12805255]
  35. PLoS One. 2008 Feb 20;3(2):e1619 [PMID: 18286176]
  36. J Bacteriol. 1996 Jan;178(1):306-8 [PMID: 8550435]
  37. Antimicrob Agents Chemother. 2008 Feb;52(2):557-62 [PMID: 18086852]
  38. Appl Environ Microbiol. 1997 Aug;63(8):3233-41 [PMID: 9251210]
  39. BMC Evol Biol. 2013 Feb 22;13:50 [PMID: 23433244]
  40. ACS Chem Biol. 2012 Sep 21;7(9):1547-55 [PMID: 22698393]
  41. J Bacteriol. 2005 Apr;187(8):2783-92 [PMID: 15805525]
  42. Antimicrob Agents Chemother. 2013 Jan;57(1):637-9 [PMID: 23114759]
  43. Antimicrob Agents Chemother. 2012 Aug;56(8):4131-9 [PMID: 22615276]
  44. J Antimicrob Chemother. 2009 Sep;64 Suppl 1:i29-36 [PMID: 19675016]
  45. Sci Transl Med. 2013 Jun 19;5(190):190ra81 [PMID: 23785037]
  46. Antimicrob Agents Chemother. 2010 Sep;54(9):3770-5 [PMID: 20606071]
  47. Clin Infect Dis. 2009 Jan 1;48(1):1-12 [PMID: 19035777]
  48. Antimicrob Agents Chemother. 2011 Mar;55(3):947-53 [PMID: 21173183]
  49. Chem Biol. 2012 Oct 26;19(10):1255-64 [PMID: 23102220]
  50. J Nat Prod. 1979 Nov-Dec;42(6):569-82 [PMID: 541685]
  51. Nat Biotechnol. 2013 Oct;31(10):922-7 [PMID: 24056948]
  52. Antimicrob Agents Chemother. 2001 Jan;45(1):105-16 [PMID: 11120952]
  53. J Antimicrob Chemother. 2008 Nov;62 Suppl 2:ii65-74 [PMID: 18819981]
  54. J Antibiot (Tokyo). 1990 Jan;43(1):54-61 [PMID: 2307630]
  55. J Antibiot (Tokyo). 1994 Nov;47(11):1219-25 [PMID: 8002383]
  56. Expert Opin Pharmacother. 2009 Dec;10(17):2811-28 [PMID: 19929704]
  57. J Antibiot (Tokyo). 1983 Apr;36(4):451-3 [PMID: 6853375]
  58. PLoS Pathog. 2009 Mar;5(3):e1000221 [PMID: 19325878]
  59. Antimicrob Agents Chemother. 2012 May;56(5):2504-10 [PMID: 22371895]
  60. J Pharm Biomed Anal. 1998 Aug;17(4-5):617-22 [PMID: 9682144]
  61. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2225-9 [PMID: 2315315]

Grants

  1. MT-13536/Canadian Institutes of Health Research

MeSH Term

Acetamides
Acinetobacter baumannii
Anthracyclines
Anti-Bacterial Agents
DNA-Directed RNA Polymerases
Drug Synergism
Escherichia coli
Linezolid
Magnetic Resonance Spectroscopy
Mass Spectrometry
Oxazolidinones
Rifampin
Streptomyces
Structure-Activity Relationship

Chemicals

Acetamides
Anthracyclines
Anti-Bacterial Agents
Oxazolidinones
DNA-Directed RNA Polymerases
RNA polymerase beta subunit
Linezolid
Rifampin

Word Cloud

Created with Highcharts 10.0.0rifampicinantibioticcoliintrinsicallyresistantEsynergisticapproachantibacterialpotentiateactivityadjuvantsfermentationmoleculepotentiationisolatedusingidentifiedAntibiotic301A1index = 0anthracyclinesGram-negativebacteriaantibioticsresistanceOBJECTIVES:orthogonaltakentowardsnoveldrugdiscoveryinvolvesidentificationsmallmoleculesenhanceexistingagentsstudyaimedidentifynatural-productorganismEscherichiaMETHODS:BW25113screened1120actinomyceteextractspresencesubinhibitory2mg/Lconcentrationsactiveexhibitinggreatestactivity-guidedmethodsmassNMRspectroscopySusceptibilitytestingbiochemicalassaysuseddeterminemechanismRESULTS:anthracyclinebrothstrainStreptomycesWAC450shownhighlyfractionalinhibitoryconcentration156moderatelylinezolidFIC25AcinetobacterbaumanniiActivityassociatedinhibitioneffluxphenotypelosttestedharbouringmutationswithinrpoBgeneStructure-activityrelationshipstudiesrevealedsynergizeremovalsugarmoietyabolishesCONCLUSIONS:Screeningsubsectionnaturalproductlibrarysmall-moleculeadjuvantcapablesensitizingordinarilyresultdemonstratesgreatpotentialexpandingeffectivenessfacegrowingchallengeGram-negativesunusualclassGram-positiveintrinsicpathogensresistome

Similar Articles

Cited By