The soldiers in societies: defense, regulation, and evolution.

Li Tian, Xuguo Zhou
Author Information
  1. Li Tian: Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.
  2. Xuguo Zhou: Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.

Abstract

The presence of reproductively altruistic castes is one of the primary traits of the eusocial societies. Adaptation and regulation of the sterile caste, to a certain extent, drives the evolution of eusociality. Depending on adaptive functions of the first evolved sterile caste, eusocial societies can be categorized into the worker-first and soldier-first lineages, respectively. The former is marked by a worker caste as the first evolved altruistic caste, whose primary function is housekeeping, and the latter is highlighted by a sterile soldier caste as the first evolved altruistic caste, whose task is predominantly colony defense. The apparent functional differences between these two fundamentally important castes suggest worker-first and soldier-first eusociality are potentially driven by a suite of distinctively different factors. Current studies of eusocial evolution have been focused largely on the worker-first Hymenoptera, whereas understanding of soldier-first lineages including termites, eusocial aphids, gall-dwelling thrips, and snapping shrimp, is greatly lacking. In this review, we summarize the current state of knowledge on biology, morphology, adaptive functions, and caste regulation of the soldier caste. In addition, we discuss the biological, ecological and genetic factors that might contribute to the evolution of distinct caste systems within eusocial lineages.

Keywords

References

  1. Proc Biol Sci. 2011 Mar 7;278(1706):656-65 [PMID: 20851830]
  2. Insect Biochem Mol Biol. 2005 Mar;35(3):207-15 [PMID: 15705500]
  3. Bull Entomol Res. 2011 Aug;101(4):423-7 [PMID: 21303588]
  4. Science. 2008 May 30;320(5880):1213-6 [PMID: 18511689]
  5. J Insect Physiol. 2008 Jun;54(6):922-30 [PMID: 18541259]
  6. Bull Entomol Res. 2003 Oct;93(5):439-45 [PMID: 14641982]
  7. Mol Phylogenet Evol. 1998 Feb;9(1):163-80 [PMID: 9479705]
  8. Nature. 2000 Jul 13;406(6792):183-6 [PMID: 10910357]
  9. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7665-8 [PMID: 16578779]
  10. Nat Commun. 2013;4:2048 [PMID: 23807025]
  11. Proc Biol Sci. 2012 Jul 7;279(1738):2662-71 [PMID: 22398169]
  12. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1976-9 [PMID: 16592995]
  13. J Insect Physiol. 2004 Feb-Mar;50(2-3):143-7 [PMID: 15019515]
  14. Dev Genes Evol. 2009 Oct;219(9-10):445-54 [PMID: 19904557]
  15. Nature. 2011 Mar 24;471(7339):E1-4; author reply E9-10 [PMID: 21430721]
  16. J Insect Sci. 2008;8:2 [PMID: 20345313]
  17. Annu Rev Entomol. 2001;46:413-40 [PMID: 11112175]
  18. Int J Biol Sci. 2013;9(3):313-21 [PMID: 23569436]
  19. J Exp Biol. 2007 Dec;210(Pt 24):4390-8 [PMID: 18232118]
  20. Science. 1902 May 16;15(385):766-74 [PMID: 17817657]
  21. Biol Lett. 2007 Aug 22;3(4):431-4 [PMID: 17535791]
  22. Proc Biol Sci. 2004 Feb 7;271 Suppl 3:S71-4 [PMID: 15101423]
  23. Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11338-43 [PMID: 15277678]
  24. J Evol Biol. 2010 Dec;23(12):2677-84 [PMID: 21040070]
  25. Mol Ecol. 2002 Aug;11(8):1525-31 [PMID: 12144671]
  26. Gen Comp Endocrinol. 1990 Jul;79(1):31-8 [PMID: 2354779]
  27. Proc Biol Sci. 1997 Jul 22;264(1384):993-1000 [PMID: 9263466]
  28. Biol Lett. 2012 Aug 23;8(4):526-9 [PMID: 22496077]
  29. Science. 1981 Jul 17;213(4505):361-3 [PMID: 17819911]
  30. J Exp Zool B Mol Dev Evol. 2013 Jul;320(5):295-306 [PMID: 23703784]
  31. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1648-50 [PMID: 10660681]
  32. Biol Rev Camb Philos Soc. 1996 Feb;71(1):27-79 [PMID: 8603120]
  33. Monogr Popul Biol. 1978;12:1-352 [PMID: 740003]
  34. Arthropod Struct Dev. 2013 May;42(3):257-64 [PMID: 23459016]
  35. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13367-71 [PMID: 16157878]
  36. J Evol Biol. 2007 Jan;20(1):165-72 [PMID: 17210009]
  37. Philos Trans R Soc Lond B Biol Sci. 2009 Nov 12;364(1533):3191-207 [PMID: 19805427]
  38. J Insect Sci. 2010;10:1 [PMID: 20569122]
  39. Curr Biol. 2010 Nov 23;20(22):R985-7 [PMID: 21093794]
  40. Evolution. 2000 Apr;54(2):503-16 [PMID: 10937227]
  41. J Evol Biol. 2004 Jul;17(4):869-75 [PMID: 15271087]
  42. Naturwissenschaften. 2000 Jul;87(7):323-6 [PMID: 11013882]
  43. J Insect Physiol. 2011 Jun;57(6):771-7 [PMID: 21356212]
  44. J Hered. 2006 Jan-Feb;97(1):31-8 [PMID: 16394258]
  45. Nature. 2010 Aug 26;466(7310):1057-62 [PMID: 20740005]
  46. Zoolog Sci. 2012 Apr;29(4):213-7 [PMID: 22468829]
  47. Proc Biol Sci. 2010 Dec 22;277(1701):3793-800 [PMID: 20591861]
  48. Science. 2012 Jan 6;335(6064):79-82 [PMID: 22223805]
  49. Curr Biol. 2004 Mar 23;14(6):514-9 [PMID: 15043818]
  50. J Chem Ecol. 1982 Jan;8(1):147-61 [PMID: 24414591]
  51. Science. 1976 Jan 23;191(4224):249-63 [PMID: 1108197]
  52. J Insect Physiol. 2010 Sep;56(9):1012-21 [PMID: 20223240]
  53. Commun Integr Biol. 2010 Jan;3(1):1-5 [PMID: 20539772]
  54. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4499-504 [PMID: 16537425]
  55. Nature. 2011 Mar 24;471(7339):E5-6; author reply E9-10 [PMID: 21430723]
  56. Nat Rev Genet. 2008 Oct;9(10):735-48 [PMID: 18802413]
  57. Front Zool. 2007 Feb 22;4:7 [PMID: 17316424]
  58. Horm Behav. 2002 Sep;42(2):222-31 [PMID: 12367575]
  59. J Theor Biol. 2002 Sep 21;218(2):195-205 [PMID: 12381292]
  60. Front Zool. 2008 Sep 29;5:15 [PMID: 18822181]
  61. J Insect Sci. 2007;7:1-8 [PMID: 20307241]
  62. Naturwissenschaften. 2003 Oct;90(10):477-80 [PMID: 14564409]
  63. Proc Biol Sci. 2000 Sep 22;267(1455):1863-8 [PMID: 11052537]
  64. Int J Parasitol. 2011 Aug 15;41(10):1063-8 [PMID: 21683703]
  65. J Chem Ecol. 2009 Feb;35(2):256-64 [PMID: 19198947]
  66. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  67. BMC Dev Biol. 2010 Jun 08;10:63 [PMID: 20529303]
  68. Q Rev Biol. 1953 Jun;28(2):136-56 [PMID: 13074471]
  69. Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12068-71 [PMID: 11562469]
  70. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1182-6 [PMID: 22232688]
  71. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5764-8 [PMID: 16592723]
  72. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12963-8 [PMID: 20615972]
  73. J Insect Physiol. 2004 Nov;50(11):995-1000 [PMID: 15607502]
  74. Science. 1981 May 1;212(4494):571-3 [PMID: 7209555]
  75. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2460-4 [PMID: 17287354]
  76. Am Nat. 2008 Oct;172(4):497-507 [PMID: 18707530]
  77. Proc Biol Sci. 2010 Feb 22;277(1681):575-84 [PMID: 19889706]
  78. Annu Rev Entomol. 1997;42:51-71 [PMID: 15012307]
  79. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12808-13 [PMID: 14555764]
  80. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3330-5 [PMID: 15728373]

MeSH Term

Animals
Behavior, Animal
Biological Evolution
Hymenoptera
Isoptera
Social Behavior

Word Cloud

Created with Highcharts 10.0.0casteeusocialevolutionworker-firstsoldier-firstaltruisticregulationsterileeusocialityfirstevolvedlineagescastesprimarysocietiesadaptivefunctionswhosesoldierdefensefactorsHymenopteratermiteslineagepresencereproductivelyonetraitsAdaptationcertainextentdrivesDependingcancategorizedrespectivelyformermarkedworkerfunctionhousekeepinglatterhighlightedtaskpredominantlycolonyapparentfunctionaldifferencestwofundamentallyimportantsuggestpotentiallydrivensuitedistinctivelydifferentCurrentstudiesfocusedlargelywhereasunderstandingincludingaphidsgall-dwellingthripssnappingshrimpgreatlylackingreviewsummarizecurrentstateknowledgebiologymorphologyadditiondiscussbiologicalecologicalgeneticmightcontributedistinctsystemswithinsoldierssocieties:Soldier

Similar Articles

Cited By