An algebra-based method for inferring gene regulatory networks.

Paola Vera-Licona, Abdul Jarrah, Luis David Garcia-Puente, John McGee, Reinhard Laubenbacher
Author Information
  1. Paola Vera-Licona: Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030-6029, USA. veralicona@uchc.edu.

Abstract

BACKGROUND: The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used.
RESULTS: This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network.
CONCLUSIONS: Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.

References

  1. Neural Netw. 2007 Oct;20(8):917-27 [PMID: 17714912]
  2. Ann N Y Acad Sci. 2009 Mar;1158:159-95 [PMID: 19348640]
  3. Int J Med Inform. 2007 Dec;76 Suppl 3:S462-75 [PMID: 17825607]
  4. Science. 2003 Jul 4;301(5629):102-5 [PMID: 12843395]
  5. J Comput Biol. 2001;8(4):429-42 [PMID: 11571076]
  6. Source Code Biol Med. 2008 Nov 14;3:16 [PMID: 19014577]
  7. Bioinformatics. 2008 Sep 1;24(17):1917-25 [PMID: 18614585]
  8. BMC Syst Biol. 2012 Nov 22;6:145 [PMID: 23173819]
  9. Science. 2009 Jul 24;325(5939):471-3 [PMID: 19628867]
  10. BMC Syst Biol. 2012 Sep 02;6:119 [PMID: 22937832]
  11. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  12. IET Syst Biol. 2007 Sep;1(5):306-12 [PMID: 17907680]
  13. BMC Syst Biol. 2012 Aug 16;6:101 [PMID: 22898396]
  14. BMC Bioinformatics. 2010 Jun 21;11:337 [PMID: 20565962]
  15. Mol Syst Biol. 2009;5:331 [PMID: 19953085]
  16. BMC Syst Biol. 2008 Nov 24;2:99 [PMID: 19025648]
  17. J Comput Biol. 2010 Jun;17(6):853-68 [PMID: 20583929]
  18. J Clin Monit Comput. 2005 Oct;19(4-5):329-37 [PMID: 16328947]
  19. J Theor Biol. 2004 Aug 21;229(4):523-37 [PMID: 15246788]
  20. BMC Bioinformatics. 2010 Jan 27;11:59 [PMID: 20105328]
  21. Bioinformatics. 2006 May 1;22(9):1111-21 [PMID: 16522673]
  22. Bioinformatics. 2007 May 15;23(10):1265-73 [PMID: 17379691]
  23. BMC Syst Biol. 2012;6 Suppl 1:S3 [PMID: 23046631]
  24. Nat Chem Biol. 2008 Nov;4(11):658-64 [PMID: 18936750]
  25. J Theor Biol. 2003 Jul 7;223(1):1-18 [PMID: 12782112]
  26. Ann N Y Acad Sci. 2007 Dec;1115:1-22 [PMID: 17925349]
  27. IEEE/ACM Trans Comput Biol Bioinform. 2008 Apr-Jun;5(2):262-74 [PMID: 18451435]
  28. BMC Bioinformatics. 2007 May 24;8 Suppl 5:S2 [PMID: 17570861]
  29. BMC Bioinformatics. 2011 Jul 19;12:292 [PMID: 21771321]
  30. Bioinformatics. 2005 Apr 1;21(7):1180-8 [PMID: 15513993]
  31. PLoS One. 2010 Mar 22;5(3):e9803 [PMID: 20339551]
  32. Bioinformatics. 2010 May 1;26(9):1239-45 [PMID: 20305266]
  33. Bioinformatics. 2002 Feb;18(2):261-74 [PMID: 11847074]
  34. PLoS One. 2010 Oct 25;5(10):e13397 [PMID: 21049040]
  35. BMC Genomics. 2010 Dec 02;11 Suppl 4:S18 [PMID: 21143801]
  36. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6163-8 [PMID: 11983907]
  37. J Theor Biol. 2005 Aug 7;235(3):431-49 [PMID: 15882705]
  38. Bioinformatics. 2009 Feb 15;25(4):519-25 [PMID: 19126574]
  39. Nat Methods. 2012 Jul 15;9(8):796-804 [PMID: 22796662]
  40. Bioinformatics. 2009 Jul 1;25(13):1640-6 [PMID: 19398449]
  41. BMC Bioinformatics. 2010 Mar 25;11:154 [PMID: 20338053]
  42. Cell. 2009 Apr 3;137(1):172-81 [PMID: 19327819]
  43. Bioinformatics. 2005 Apr 1;21(7):1154-63 [PMID: 15514004]
  44. J Bacteriol. 2009 Mar;191(6):1816-26 [PMID: 19124573]
  45. Biol Direct. 2007 Apr 11;2:9 [PMID: 17428341]
  46. BMC Bioinformatics. 2007 Oct 25;8:412 [PMID: 17961233]
  47. Bioinformatics. 2004 Dec 12;20(18):3594-603 [PMID: 15284094]

Grants

  1. GM068947/NIGMS NIH HHS

MeSH Term

Algorithms
Gene Knockout Techniques
Gene Regulatory Networks
Models, Genetic
RNA Interference
Reproducibility of Results
Systems Biology

Word Cloud

Created with Highcharts 10.0.0networkinferencedataalgorithmgeneexperimentalmethodregulatorynetworkssystemssearchspacedynamicmodelsnoiseframeworkBPDSmathematicaltopologydynamicsavailableinfermethodspriorknowledgeeffectivealsousedusingalgebraicBooleanpolynomialdynamicalallowsmodelBACKGROUND:GRNsobservationsheartbiologyincludesmanyalgorithmslessemphasisplacedFurthermoresinceproblemtypicallyunderdeterminedessentialoptionincorporatingprocessalongdescriptionFinallyimportantunderstandinggivenaffectedRESULTS:papercontainsnovelmeetingrequirementstakesinputtimeseriesincludingperturbationsknock-outmutantstrainsRNAiexperimentsincorporationbiologicalrobustsignificantlevelsusesevolutionarylocaloptimizationencodingrepresentationimprovescomputationalperformancevalidatedsimulatedmicroarrayexpressionprofileRobustnesstestedpublishedsegmentpolarityDrosophilamelanogasterBenchmarkingdonecomparisonspectrumstate-of-the-artsyntheticIRMAdemonstrategoodprecisionrecallreconstructiontaskpredictingseveralpatternspresentCONCLUSIONS:providepowerfulmodelingreverseengineeringenablesrichstructureC++implementationdistributedLPGLlicensetogethersourcecodehttp://wwwpaola-vera-liconanet/Software/EARevEng/REACThtmlalgebra-basedinferring

Similar Articles

Cited By (7)