Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction.
S J Brantley, B T Gufford, R Dua, D J Fediuk, T N Graf, Y V Scarlett, K S Frederick, M B Fisher, N H Oberlies, M F Paine
Author Information
S J Brantley: Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
B T Gufford: College of Pharmacy, Washington State University, Spokane, Washington, USA.
R Dua: Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
D J Fediuk: Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
T N Graf: Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
Y V Scarlett: School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
K S Frederick: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA.
M B Fisher: ProPharma Services, LLC, Oxford, Connecticut, USA.
N H Oberlies: Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
M F Paine: College of Pharmacy, Washington State University, Spokane, Washington, USA.
中文译文
English
Herb-drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb-drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb-drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions.CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e107; doi:10.1038/psp.2013.69; advance online publication 26 March 2014.
Pharmacogenetics. 1996 Aug;6(4):341-9
[PMID: 8873220 ]
J Pharm Sci. 2001 Apr;90(4):436-47
[PMID: 11170034 ]
Toxicol In Vitro. 2011 Feb;25(1):21-7
[PMID: 20828605 ]
J Clin Pharmacol. 2000 Aug;40(8):826-35
[PMID: 10934666 ]
J Clin Pharmacol. 2010 Apr;50(4):434-49
[PMID: 19841158 ]
Drug Metab Dispos. 2004 Jun;32(6):587-94
[PMID: 15155549 ]
J Clin Pharmacol. 2006 Feb;46(2):201-13
[PMID: 16432272 ]
Br J Clin Pharmacol. 1994 Jun;37(6):563-9
[PMID: 7917775 ]
Pharm Res. 2008 Aug;25(8):1807-14
[PMID: 18236139 ]
J Pharm Sci. 2001 Sep;90(9):1226-41
[PMID: 11745776 ]
Front Pharmacol. 2011 Nov 10;2:56
[PMID: 22084631 ]
Drug Metab Dispos. 2008 Sep;36(9):1786-93
[PMID: 18515332 ]
Clin Pharmacol Ther. 1998 Sep;64(3):269-77
[PMID: 9757150 ]
Expert Opin Drug Metab Toxicol. 2007 Feb;3(1):67-80
[PMID: 17269895 ]
Clin Pharmacol Ther. 1995 Dec;58(6):641-9
[PMID: 8529329 ]
Phytother Res. 2002 Nov;16(7):632-8
[PMID: 12410543 ]
Teratology. 1994 Feb;49(2):90-103
[PMID: 8016750 ]
Planta Med. 2007 Nov;73(14):1495-501
[PMID: 17948171 ]
Eur J Clin Pharmacol. 2009 Jun;65(6):585-91
[PMID: 19221727 ]
Clin Pharmacokinet. 2010 Mar;49(3):189-206
[PMID: 20170207 ]
J Clin Pharmacol. 1999 Jul;39(7):664-9
[PMID: 10392320 ]
Drug Metab Dispos. 2008 Jan;36(1):65-72
[PMID: 17913795 ]
Org Biomol Chem. 2003 May 21;1(10):1684-9
[PMID: 12926355 ]
Chirality. 1991;3(1):24-9
[PMID: 2039681 ]
Br J Clin Pharmacol. 1987 Mar;23(3):273-8
[PMID: 3567042 ]
Drug Metab Dispos. 2013 Sep;41(9):1662-70
[PMID: 23801821 ]
Curr Top Med Chem. 2011;11(4):334-9
[PMID: 21320062 ]
J Pharmacol Exp Ther. 2010 Mar;332(3):1081-7
[PMID: 19934397 ]
Drug Metab Dispos. 2009 Mar;37(3):514-22
[PMID: 19114462 ]
Drug Metab Dispos. 2009 Aug;37(8):1658-66
[PMID: 19406954 ]
J Clin Pharmacol. 2004 Jun;44(6):570-6
[PMID: 15145963 ]
Clin Pharmacol Ther. 2012 Nov;92(5):651-7
[PMID: 23047652 ]
Clin Pharmacol Ther. 2004 Nov;76(5):428-40
[PMID: 15536458 ]
Radiat Prot Dosimetry. 2003;105(1-4):571-4
[PMID: 14527029 ]
Cancer Res. 2005 May 15;65(10):4448-57
[PMID: 15899838 ]
J Exp Pharmacol. 2010 Jul;2010(2):83-91
[PMID: 20865058 ]
Curr Drug Metab. 2007 Jan;8(1):33-45
[PMID: 17266522 ]
Planta Med. 2012 Sep;78(13):1458-77
[PMID: 22855269 ]
Planta Med. 2012 Sep;78(13):1478-89
[PMID: 22322396 ]
Planta Med. 2012 Sep;78(13):1400-15
[PMID: 22864989 ]
Clin Pharmacol Ther. 2012 Mar;91(3):542-9
[PMID: 22318616 ]
Integr Cancer Ther. 2007 Jun;6(2):110-9
[PMID: 17548790 ]
Hepatogastroenterology. 1998 Jul-Aug;45(22):1069-74
[PMID: 9756008 ]
J Nat Prod. 2010 Apr 23;73(4):613-9
[PMID: 20297826 ]
R01 GM077482/NIGMS NIH HHS
UL1 TR000083/NCATS NIH HHS