Ongoing behavior predicts perceptual report of interval duration.

Thiago S Gouvêa, Tiago Monteiro, Sofia Soares, Bassam V Atallah, Joseph J Paton
Author Information
  1. Thiago S Gouvêa: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal.
  2. Tiago Monteiro: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal.
  3. Sofia Soares: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal.
  4. Bassam V Atallah: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal.
  5. Joseph J Paton: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal.

Abstract

The ability to estimate the passage of time is essential for adaptive behavior in complex environments. Yet, it is not known how the brain encodes time over the durations necessary to explain animal behavior. Under temporally structured reinforcement schedules, animals tend to develop temporally structured behavior, and interval timing has been suggested to be accomplished by learning sequences of behavioral states. If this is true, trial to trial fluctuations in behavioral sequences should be predictive of fluctuations in time estimation. We trained rodents in an duration categorization task while continuously monitoring their behavior with a high speed camera. Animals developed highly reproducible behavioral sequences during the interval being timed. Moreover, those sequences were often predictive of perceptual report from early in the trial, providing support to the idea that animals may use learned behavioral patterns to estimate the duration of time intervals. To better resolve the issue, we propose that continuous and simultaneous behavioral and neural monitoring will enable identification of neural activity related to time perception that is not explained by ongoing behavior.

Keywords

References

  1. Neuroscience. 1999;91(3):871-90 [PMID: 10391468]
  2. Neuron. 2001 May;30(2):319-33 [PMID: 11394996]
  3. J Neurosci. 2011 Jun 22;31(25):9238-53 [PMID: 21697374]
  4. Bioessays. 2000 Jan;22(1):94-103 [PMID: 10649295]
  5. J Exp Anal Behav. 1962 Oct;5:473-9 [PMID: 13963809]
  6. J Neurosci. 2013 Aug 21;33(34):13834-47 [PMID: 23966703]
  7. Psychopharmacology (Berl). 1983;79(1):10-5 [PMID: 6403957]
  8. Vis Neurosci. 1996 Jan-Feb;13(1):87-100 [PMID: 8730992]
  9. J Neurosci. 2012 Feb 15;32(7):2276-86 [PMID: 22396403]
  10. J Exp Anal Behav. 1977 Jan;27(1):33-49 [PMID: 16811980]
  11. Neural Comput. 2008 Dec;20(12):3034-54 [PMID: 18624657]
  12. Brain Res Cogn Brain Res. 2004 Oct;21(2):139-70 [PMID: 15464348]
  13. J Exp Psychol. 1948 Apr;38(2):168-72 [PMID: 18913665]
  14. Nat Rev Neurosci. 2013 Mar;14(3):217-23 [PMID: 23403747]
  15. Curr Opin Neurobiol. 2004 Apr;14(2):225-32 [PMID: 15082329]
  16. Annu Rev Neurosci. 2005;28:357-76 [PMID: 16022600]
  17. Nat Neurosci. 2005 Feb;8(2):234-41 [PMID: 15657597]
  18. Genes Brain Behav. 2008 Apr;7(3):373-84 [PMID: 17696995]
  19. Curr Opin Neurobiol. 2008 Apr;18(2):145-52 [PMID: 18708142]
  20. Behav Processes. 2003 Apr 28;62(1-3):157-182 [PMID: 12729976]
  21. Psychol Rev. 1997 Apr;104(2):241-65 [PMID: 9127582]
  22. J Neurosci. 2012 Feb 15;32(7):2473-84 [PMID: 22396421]
  23. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19156-61 [PMID: 19850874]
  24. Front Comput Neurosci. 2011 Jun 21;5:29 [PMID: 21734877]
  25. Annu Rev Neurosci. 2012;35:463-83 [PMID: 22483043]
  26. Psychol Rev. 1988 Apr;95(2):274-95 [PMID: 3375401]
  27. Science. 2003 Mar 21;299(5614):1898-902 [PMID: 12649484]
  28. Trends Neurosci. 2009 Feb;32(2):73-8 [PMID: 19136158]
  29. Science. 1995 Feb 17;267(5200):1028-30 [PMID: 7863330]
  30. Science. 2004 Jun 18;304(5678):1782-7 [PMID: 15205529]
  31. J Cogn Neurosci. 1989 Spring;1(2):136-52 [PMID: 23968462]
  32. Curr Opin Neurobiol. 2011 Aug;21(4):571-8 [PMID: 21628098]
  33. J Exp Anal Behav. 2005 Nov;84(3):555-79 [PMID: 16596980]

Word Cloud

Created with Highcharts 10.0.0timebehaviorbehavioralintervalsequencestrialdurationperceptualestimatetemporallystructuredanimalstimingfluctuationspredictivemonitoringreportneuralperceptiondecisionmakingabilitypassageessentialadaptivecomplexenvironmentsYetknownbrainencodesdurationsnecessaryexplainanimalreinforcementschedulestenddevelopsuggestedaccomplishedlearningstatestrueestimationtrainedrodentscategorizationtaskcontinuouslyhighspeedcameraAnimalsdevelopedhighlyreproducibletimedMoreoveroftenearlyprovidingsupportideamayuselearnedpatternsintervalsbetterresolveissueproposecontinuoussimultaneouswillenableidentificationactivityrelatedexplainedongoingOngoingpredictschoiceprobabilityembodiedcognition

Similar Articles

Cited By