Inclusive fitness in agriculture.

E Toby Kiers, R Ford Denison
Author Information
  1. E Toby Kiers: Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.

Abstract

Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions.

Keywords

References

  1. Q Rev Biol. 2003 Jun;78(2):145-68 [PMID: 12825416]
  2. Appl Environ Microbiol. 2011 Sep;77(18):6510-5 [PMID: 21784911]
  3. Curr Biol. 2011 Sep 27;21(18):R775-85 [PMID: 21959168]
  4. New Phytol. 2008;180(4):890-8 [PMID: 18801003]
  5. Appl Environ Microbiol. 1999 Jul;65(7):2833-40 [PMID: 10388672]
  6. Science. 2011 Aug 12;333(6044):880-2 [PMID: 21836016]
  7. ISME J. 2014 Feb;8(2):284-94 [PMID: 24030596]
  8. Mycorrhiza. 2013 Aug;23(6):507-14 [PMID: 23467773]
  9. Curr Biol. 2010 Oct 12;20(19):1740-4 [PMID: 20869244]
  10. Appl Environ Microbiol. 2000 Jun;66(6):2658-63 [PMID: 10831453]
  11. Ecol Appl. 1993 Nov;3(4):749-757 [PMID: 27759303]
  12. Proc Biol Sci. 2007 Dec 22;274(1629):3119-26 [PMID: 17939985]
  13. Philos Trans R Soc Lond B Biol Sci. 2009 Nov 12;364(1533):3143-55 [PMID: 19805423]
  14. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16970-5 [PMID: 17939995]
  15. Curr Biol. 2007 Aug 21;17(16):R661-72 [PMID: 17714660]
  16. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2670-5 [PMID: 23362379]
  17. Proc Biol Sci. 2009 Jul 22;276(1667):2531-40 [PMID: 19403541]
  18. New Phytol. 2009;183(4):967-979 [PMID: 19594691]
  19. New Phytol. 2013 Mar;197(4):1104-9 [PMID: 23495389]
  20. New Phytol. 2011 Feb;189(3):652-657 [PMID: 21166810]
  21. New Phytol. 2004 Oct;164(1):175-181 [PMID: 33873483]
  22. Proc Biol Sci. 2006 Jan 7;273(1582):77-81 [PMID: 16519238]
  23. New Phytol. 2009 Oct;184(2):424-437 [PMID: 19558424]
  24. Proc Biol Sci. 2010 Jul 7;277(1690):1947-51 [PMID: 20200033]
  25. Ecology. 2006 Mar;87(3):535-41 [PMID: 16602282]
  26. Ecology. 2013 Sep;94(9):2019-29 [PMID: 24279273]
  27. Biol Lett. 2007 Aug 22;3(4):435-8 [PMID: 17567552]
  28. Am Nat. 2012 May;179(5):567-81 [PMID: 22504540]
  29. Evol Appl. 2010 Sep;3(5-6):473-9 [PMID: 25567940]
  30. New Phytol. 2010 Jul;187(2):508-520 [PMID: 20456052]
  31. PLoS One. 2010 Oct 13;5(10):e13324 [PMID: 20967206]
  32. New Phytol. 2013 Oct;200(1):211-221 [PMID: 23790215]
  33. Plant Physiol. 1978 Jul;62(1):131-3 [PMID: 16660451]
  34. Evolution. 1968 Mar;22(1):119-124 [PMID: 28564989]
  35. Evol Appl. 2010 Sep;3(5-6):466-72 [PMID: 25567939]
  36. Curr Biol. 2013 Jul 8;23(13):R577-84 [PMID: 23845249]
  37. Ecol Lett. 2013 Jul;16(7):835-43 [PMID: 23656527]
  38. Ecol Lett. 2009 Jan;12(1):13-21 [PMID: 19019195]
  39. ISME J. 2013 Nov;7(11):2137-46 [PMID: 23823490]
  40. Commun Integr Biol. 2010 Jan;3(1):28-35 [PMID: 20539778]
  41. Appl Environ Microbiol. 2003 Nov;69(11):6762-7 [PMID: 14602638]
  42. Mol Ecol. 2004 Oct;13(10):3179-86 [PMID: 15367130]
  43. Mol Ecol. 2014 Mar;23(6):1584-1593 [PMID: 24050702]
  44. Annu Rev Genet. 2010;44:271-92 [PMID: 20822441]
  45. Science. 2010 Feb 26;327(5969):1122-6 [PMID: 20185722]
  46. Curr Biol. 2010 Jul 13;20(13):1216-21 [PMID: 20541408]
  47. Plant Physiol. 2010 Nov;154(3):1541-8 [PMID: 20837702]
  48. Eukaryot Cell. 2012 Nov;11(11):1345-52 [PMID: 22962278]
  49. BMC Evol Biol. 2011 Feb 24;11:51 [PMID: 21349193]
  50. Am Nat. 2010 Apr;175(4):424-35 [PMID: 20170364]
  51. New Phytol. 2012 Nov;196(3):853-861 [PMID: 22931497]
  52. J Exp Bot. 2009;60(9):2465-80 [PMID: 19429838]
  53. Nature. 2004 Feb 19;427(6976):733-7 [PMID: 14973485]
  54. Genome Biol Evol. 2011;3:950-8 [PMID: 21876220]
  55. Nature. 2005 Jan 13;433(7022):160-3 [PMID: 15650740]
  56. ISME J. 2009 Jul;3(7):870-2 [PMID: 19360026]
  57. Nature. 2003 Sep 4;425(6953):78-81 [PMID: 12955144]
  58. Am Nat. 2000 Dec;156(6):567-576 [PMID: 29592542]
  59. Mycologia. 2012 Jan-Feb;104(1):1-13 [PMID: 21933929]
  60. Proc Biol Sci. 2011 Sep 07;278(1718):2698-703 [PMID: 21270038]
  61. FEMS Microbiol Ecol. 2008 Sep;65(3):391-9 [PMID: 18631180]
  62. New Phytol. 2001 Sep;151(3):717-724 [PMID: 33853252]
  63. Philos Trans R Soc Lond B Biol Sci. 2007 Jul 29;362(1483):1149-63 [PMID: 17360278]
  64. Science. 2005 Feb 4;307(5710):741-4 [PMID: 15692054]
  65. Biol Lett. 2008 Feb 23;4(1):67-8; discussion 69-70 [PMID: 18089522]
  66. Plant Physiol. 2012 Jun;159(2):789-97 [PMID: 22517410]
  67. PLoS One. 2013 Jul 25;8(7):e70006 [PMID: 23936133]
  68. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8985-9 [PMID: 7568057]
  69. PLoS One. 2012;7(9):e45648 [PMID: 23029158]
  70. Appl Environ Microbiol. 1989 Oct;55(10):2493-8 [PMID: 16348026]
  71. Appl Environ Microbiol. 2003 Jan;69(1):616-24 [PMID: 12514049]
  72. Am Nat. 2013 Aug;182(2):147-56 [PMID: 23852350]
  73. J Bacteriol. 1996 Mar;178(6):1646-54 [PMID: 8626293]
  74. Mol Ecol. 1996 Apr;5(2):177-86 [PMID: 8673267]
  75. Evol Appl. 2010 Sep;3(5-6):547-60 [PMID: 25567946]

MeSH Term

Biological Evolution
Breeding
Crops, Agricultural
Genetic Fitness
Humans
Mycorrhizae
Rhizobiaceae
Selection, Genetic
Species Specificity
Symbiosis

Word Cloud

Created with Highcharts 10.0.0fitnessindividualcropresourcesagricultureinteractionsperformancecommunityselectioninclusivelimitedplantscooperationamongsymbiontsTrade-offscollectivebelow-groundsymbiontcommunitiescommonPlantcompetitivenesslightsoilkeyhigherinvestmentsstemsrootsplantcompeteultimatelyreduceyieldsSimilarlyrhizobiamycorrhizalfungimayincreasedivertingreproductionevenbenefitedcollectivelyprovidingsharedhostnitrogenphosphorusrespectivelyPastbenefitsothersweightedrelatednessunlikelyfavouredevidencekinrecognitionmicrobeschangesconclusionslightlythereforearguestillampleopportunityhuman-imposedimproveuseefficientlyevolutionarilyinformedapproachwillrequirebetterunderstandingcropsaffectedpastimpliescurrentInclusiveDarwinianHamiltonbreedingsymbiosistragedycommons

Similar Articles

Cited By