Mixed triple: allied viruses in unique recent isolates of highly virulent type 2 bovine viral diarrhea virus detected by deep sequencing.

Maria Jenckel, Dirk Höper, Horst Schirrmeier, Ilona Reimann, Katja V Goller, Bernd Hoffmann, Martin Beer
Author Information
  1. Maria Jenckel: Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
  2. Dirk Höper: Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
  3. Horst Schirrmeier: Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
  4. Ilona Reimann: Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
  5. Katja V Goller: Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
  6. Bernd Hoffmann: Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
  7. Martin Beer: Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany martin.beer@fli.bund.de.

Abstract

In February 2013, very severe acute clinical symptoms were observed in calves, heifers, and dairy cattle in several farms in North Rhine Westphalia and Lower Saxony, Germany. Deep sequencing revealed the coexistence of three distinct genome variants within recent highly virulent bovine viral diarrhea virus type 2 (BVDV-2) isolates. While the major portion (ca. 95%) of the population harbored a duplication of a 222-nucleotide (nt) segment within the p7-NS2-encoding region, the minority reflected the standard structure of a BVDV-2 genome. Additionally, unusual mutations were found in both variants, within the highly conserved p7 protein and close to the p7-NS2 cleavage site. Using a reverse genetic system with a BVDV-2a strain harboring a similar duplication, it could be demonstrated that during replication, genomes without duplication are generated de novo from genomes with duplication. The major variant with duplication is compulsorily escorted by the minor variant without duplication. RNA secondary structure prediction allowed the analysis of the unique but stable mixture of three BVDV variants and also provided the explanation for their generation. Finally, our results suggest that the variant with duplication plays the major role in the highly virulent phenotype.
IMPORTANCE: This study emphasizes the importance of full-genome deep sequencing in combination with manual in-depth data analysis for the investigation of viruses in basic research and diagnostics. Here we investigated recent highly virulent bovine viral diarrhea virus isolates from a 2013 series of outbreaks. We discovered a unique special feature of the viral genome, an unstable duplication of 222 nucleotides which is eventually deleted by viral polymerase activity, leading to an unexpectedly mixed population of viral genomes for all investigated isolates. Our study is of high importance to the field because we demonstrate that these insertion/deletion events allow another level of genome plasticity of plus-strand RNA viruses, in addition to the well-known polymerase-induced single nucleotide variations which are generally considered the main basis for viral adaptation and evolution.

References

  1. J Vet Diagn Invest. 1998 Jan;10(1):27-35 [PMID: 9526857]
  2. Am J Vet Res. 1957 Oct;18(69):952-3 [PMID: 13470255]
  3. Virology. 1992 Nov;191(1):368-86 [PMID: 1329326]
  4. Adv Virus Res. 1996;47:53-118 [PMID: 8895831]
  5. PLoS One. 2012;7(2):e32604 [PMID: 22389712]
  6. Vet Microbiol. 2010 Apr 21;142(1-2):34-40 [PMID: 19854006]
  7. J Gen Virol. 2010 Nov;91(Pt 11):2687-97 [PMID: 20660149]
  8. Mol Cell Probes. 1998 Apr;12(2):101-6 [PMID: 9633045]
  9. J Gen Virol. 2003 Nov;84(Pt 11):3115-3120 [PMID: 14573817]
  10. Virology. 1987 May;158(1):168-73 [PMID: 3033887]
  11. Virology. 1995 Sep 10;212(1):39-46 [PMID: 7676648]
  12. Berl Munch Tierarztl Wochenschr. 2011 Jan-Feb;124(1-2):36-47 [PMID: 21309164]
  13. Proc Soc Exp Biol Med. 1957 Apr;94(4):795-7 [PMID: 13431960]
  14. Virus Res. 1998 Sep;57(1):1-9 [PMID: 9833880]
  15. Biotechniques. 2001 Jul;31(1):88-90, 92 [PMID: 11464525]
  16. J Virol. 2005 Nov;79(22):14095-101 [PMID: 16254344]
  17. J Vet Med B Infect Dis Vet Public Health. 2002 Feb;49(1):43-7 [PMID: 11911592]
  18. Vet Rec. 1984 Jun 2;114(22):535-6 [PMID: 6087539]
  19. Vet Microbiol. 2010 Apr 21;142(1-2):3-12 [PMID: 19875251]
  20. J Virol Methods. 2006 Sep;136(1-2):200-9 [PMID: 16806503]
  21. Virus Res. 1997 Jun;49(2):173-86 [PMID: 9213392]
  22. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  23. J Am Vet Med Assoc. 1987 Jun 1;190(11):1449-58 [PMID: 3038804]
  24. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6817-21 [PMID: 6093123]
  25. Vet Microbiol. 2000 Nov 15;77(1-2):145-55 [PMID: 11042408]
  26. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9156-60 [PMID: 1409617]
  27. Proc Int Conf Intell Syst Mol Biol. 1998;6:175-82 [PMID: 9783223]
  28. Curr Protoc Nucleic Acid Chem. 2007 Mar;Chapter 11:Unit 11.2 [PMID: 18428968]
  29. J Vet Diagn Invest. 2000 Jan;12(1):33-8 [PMID: 10690773]
  30. Antiviral Res. 2014 Jan;101:30-6 [PMID: 24189547]
  31. Vet Res. 2010 Nov-Dec;41(6):44 [PMID: 20197026]
  32. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  33. Rev Sci Tech. 1990 Mar;9(1):75-93 [PMID: 2132155]
  34. Acta Vet Scand. 1988;29(1):77-84 [PMID: 2849295]
  35. Cornell Vet. 1960 Jan;50:73-9 [PMID: 13850091]
  36. Virology. 1988 Jul;165(1):200-8 [PMID: 2838958]
  37. J Virol. 1996 Jun;70(6):4131-5 [PMID: 8648755]
  38. J Gen Virol. 1996 Nov;77 ( Pt 11):2729-36 [PMID: 8922466]
  39. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  40. Virology. 1988 Jul;165(1):191-9 [PMID: 2838957]

MeSH Term

Animals
Bovine Virus Diarrhea-Mucosal Disease
Cattle
Diarrhea Virus 2, Bovine Viral
Genome, Viral
High-Throughput Nucleotide Sequencing
Molecular Sequence Data
Nucleic Acid Conformation
Phylogeny
RNA, Viral
Repetitive Sequences, Nucleic Acid
Virulence

Chemicals

RNA, Viral