Evolutionary game dynamics in populations with heterogenous structures.

Wes Maciejewski, Feng Fu, Christoph Hauert
Author Information
  1. Wes Maciejewski: Department of Mathematics, The University of British Columbia, Vancouver, British Columbia, Canada.
  2. Feng Fu: Theoretical Biology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
  3. Christoph Hauert: Department of Mathematics, The University of British Columbia, Vancouver, British Columbia, Canada.

Abstract

Evolutionary graph theory is a well established framework for modelling the evolution of social behaviours in structured populations. An emerging consensus in this field is that graphs that exhibit heterogeneity in the number of connections between individuals are more conducive to the spread of cooperative behaviours. In this article we show that such a conclusion largely depends on the individual-level interactions that take place. In particular, averaging payoffs garnered through game interactions rather than accumulating the payoffs can altogether remove the cooperative advantage of heterogeneous graphs while such a difference does not affect the outcome on homogeneous structures. In addition, the rate at which game interactions occur can alter the evolutionary outcome. Less interactions allow heterogeneous graphs to support more cooperation than homogeneous graphs, while higher rates of interactions make homogeneous and heterogeneous graphs virtually indistinguishable in their ability to support cooperation. Most importantly, we show that common measures of evolutionary advantage used in homogeneous populations, such as a comparison of the fixation probability of a rare mutant to that of the resident type, are no longer valid in heterogeneous populations. Heterogeneity causes a bias in where mutations occur in the population which affects the mutant's fixation probability. We derive the appropriate measures for heterogeneous populations that account for this bias.

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):047107 [PMID: 16383580]
  2. PLoS Comput Biol. 2006 Oct 20;2(10):e140 [PMID: 17054392]
  3. Genetics. 1931 Mar;16(2):97-159 [PMID: 17246615]
  4. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  5. J Theor Biol. 2006 Mar 21;239(2):195-202 [PMID: 16242728]
  6. J Theor Biol. 1998 Aug 21;193(4):631-648 [PMID: 9750181]
  7. J Theor Biol. 2011 Jan 21;269(1):109-22 [PMID: 20971122]
  8. J Theor Biol. 2008 Jun 21;252(4):694-710 [PMID: 18371985]
  9. Nature. 2004 Apr 8;428(6983):643-6 [PMID: 15074318]
  10. Proc Biol Sci. 2001 Apr 7;268(1468):761-9 [PMID: 11321066]
  11. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7716-8 [PMID: 8356075]
  12. Genetics. 1964 Apr;49(4):561-76 [PMID: 17248204]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036123 [PMID: 11909181]
  14. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3490-4 [PMID: 16484371]
  15. Phys Rev Lett. 2005 Aug 26;95(9):098104 [PMID: 16197256]
  16. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  17. J Theor Biol. 2007 Nov 7;249(1):101-10 [PMID: 17727893]
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):047104 [PMID: 12443385]
  19. PLoS One. 2013 Jun 20;8(6):e66560 [PMID: 23818942]
  20. Nature. 2008 Jul 10;454(7201):213-6 [PMID: 18615084]
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041901 [PMID: 22680492]
  22. PLoS One. 2013;8(1):e54639 [PMID: 23382931]
  23. Proc Biol Sci. 2006 Sep 7;273(1598):2249-56 [PMID: 16901846]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011904 [PMID: 18351873]
  25. Nature. 2004 Apr 8;428(6983):646-50 [PMID: 15071593]
  26. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  27. Phys Rev Lett. 2005 Dec 2;95(23):238701 [PMID: 16384353]
  28. Nature. 2007 May 24;447(7143):469-72 [PMID: 17522682]
  29. Proc Biol Sci. 2007 Aug 7;274(1620):1815-21 [PMID: 17504741]
  30. Proc Biol Sci. 2006 Jan 7;273(1582):51-5 [PMID: 16519234]
  31. PLoS Comput Biol. 2009 Dec;5(12):e1000596 [PMID: 20011116]
  32. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt B):7332-42 [PMID: 11970678]
  33. Proc Biol Sci. 2009 Jan 7;276(1654):13-9 [PMID: 18765343]
  34. J Theor Biol. 2014 Jan 7;340:285-93 [PMID: 24096097]
  35. J Theor Biol. 2012 Apr 21;299:88-96 [PMID: 21930134]
  36. PLoS One. 2012;7(2):e32114 [PMID: 22363804]
  37. J Theor Biol. 2009 Apr 21;257(4):689-95 [PMID: 19168077]

MeSH Term

Biological Evolution
Game Theory
Social Behavior

Word Cloud

Created with Highcharts 10.0.0populationsgraphsinteractionsheterogeneoushomogeneousgameEvolutionarybehaviourscooperativeshowpayoffscanadvantageoutcomestructuresoccurevolutionarysupportcooperationmeasuresfixationprobabilitybiasgraphtheorywellestablishedframeworkmodellingevolutionsocialstructuredemergingconsensusfieldexhibitheterogeneitynumberconnectionsindividualsconducivespreadarticleconclusionlargelydependsindividual-leveltakeplaceparticularaveraginggarneredratheraccumulatingaltogetherremovedifferenceaffectadditionratealterLessallowhigherratesmakevirtuallyindistinguishableabilityimportantlycommonusedcomparisonraremutantresidenttypelongervalidHeterogeneitycausesmutationspopulationaffectsmutant'sderiveappropriateaccountdynamicsheterogenous

Similar Articles

Cited By (32)