3D printed microfluidic devices with integrated versatile and reusable electrodes.

Jayda L Erkal, Asmira Selimovic, Bethany C Gross, Sarah Y Lockwood, Eric L Walton, Stephen McNamara, R Scott Martin, Dana M Spence
Author Information
  1. Jayda L Erkal: Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA. dspence@chemistry.msu.edu.

Abstract

We report two 3D printed devices that can be used for electrochemical detection. In both cases, the electrode is housed in commercially available, polymer-based fittings so that the various electrode materials (platinum, platinum black, carbon, gold, silver) can be easily added to a threaded receiving port printed on the device; this enables a module-like approach to the experimental design, where the electrodes are removable and can be easily repolished for reuse after exposure to biological samples. The first printed device represents a microfluidic platform with a 500 × 500 μm channel and a threaded receiving port to allow integration of either polyetheretherketone (PEEK) nut-encased glassy carbon or platinum black (Pt-black) electrodes for dopamine and nitric oxide (NO) detection, respectively. The embedded 1 mm glassy carbon electrode had a limit of detection (LOD) of 500 nM for dopamine and a linear response (R(2) = 0.99) for concentrations between 25-500 μM. When the glassy carbon electrode was coated with 0.05% Nafion, significant exclusion of nitrite was observed when compared to signal obtained from equimolar injections of dopamine. When using flow injection analysis with a Pt/Pt-black electrode and standards derived from NO gas, a linear correlation (R(2) = 0.99) over a wide range of concentrations (7.6-190 μM) was obtained, with the LOD for NO being 1 μM. The second application showcases a 3D printed fluidic device that allows collection of the biologically relevant analyte adenosine triphosphate (ATP) while simultaneously measuring the release stimulus (reduced oxygen concentration). The hypoxic sample (4.8 ± 0.5 ppm oxygen) released 2.4 ± 0.4 times more ATP than the normoxic sample (8.4 ± 0.6 ppm oxygen). Importantly, the results reported here verify the reproducible and transferable nature of using 3D printing as a fabrication technique, as devices and electrodes were moved between labs multiple times during completion of the study.

References

  1. Analyst. 2009 Feb;134(2):372-9 [PMID: 19173065]
  2. J Biomater Nanobiotechnol. 2012;3(2A):243-253 [PMID: 22708072]
  3. Methods Mol Biol. 2012;868:257-67 [PMID: 22692615]
  4. Ann N Y Acad Sci. 1962 Oct 31;102:29-45 [PMID: 14021529]
  5. Neurosci Res. 1990 Sep;9(1):69-76 [PMID: 2175870]
  6. Electrophoresis. 2013 Jul;34(14):2092-100 [PMID: 23670668]
  7. Electrophoresis. 2005 Jan;26(1):202-10 [PMID: 15624172]
  8. Biomaterials. 2005 Oct;26(29):5917-25 [PMID: 15949557]
  9. Nat Chem. 2012 Apr 15;4(5):349-54 [PMID: 22522253]
  10. Anal Chem. 2004 May 1;76(9):2482-91 [PMID: 15117187]
  11. Anal Chem. 2002 Jul 15;74(14):3348-53 [PMID: 12139039]
  12. Adv Mater. 2004 Dec 20;17(3):327-330 [PMID: 17464361]
  13. Analyst. 2013 Jan 7;138(1):129-36 [PMID: 23120747]
  14. Anal Chem. 2008 Dec 15;80(24):9483-90 [PMID: 19007242]
  15. Anal Chem. 2000 Jul 15;72(14):3196-202 [PMID: 10939387]
  16. Electrophoresis. 2010 Aug;31(15):2534-40 [PMID: 20665914]
  17. Anal Chem. 2002 Dec 1;74(23):5919-23 [PMID: 12498184]
  18. Anal Chem. 2004 Aug 15;76(16):4697-704 [PMID: 15307779]
  19. Analyst. 2004 May;129(5):400-5 [PMID: 15116230]
  20. Anal Chem. 2013 Jun 18;85(12):5622-6 [PMID: 23687961]
  21. Beilstein J Org Chem. 2013 May 16;9:951-9 [PMID: 23766811]
  22. Anal Bioanal Chem. 2013 Apr;405(10):3013-20 [PMID: 23340999]
  23. Electrophoresis. 2011 Apr;32(8):822-31 [PMID: 21413031]
  24. Anal Chem. 2005 Jan 1;77(1):243-9 [PMID: 15623302]
  25. Anal Chem. 1998 Feb 15;70(4):684-8 [PMID: 9491753]
  26. Beilstein J Nanotechnol. 2013 Apr 29;4:285-91 [PMID: 23766951]
  27. Anal Chem. 2010 Sep 1;82(17):7492-7 [PMID: 20681630]
  28. Analyst. 2008 May;133(5):678-82 [PMID: 18427692]
  29. Anal Chem. 1987 Jul 15;59(14):1752-7 [PMID: 3631500]
  30. Electrophoresis. 2011 Nov;32(22):3121-8 [PMID: 22038707]
  31. Analyst. 2013 Jan 7;138(1):137-43 [PMID: 23120748]
  32. Anal Chem. 2014 Apr 1;86(7):3240-53 [PMID: 24432804]
  33. Anal Chem. 1991 Jan 1;63(1):24-8 [PMID: 1810167]
  34. Electrophoresis. 2005 Dec;26(24):4641-7 [PMID: 16294295]
  35. Anal Chem. 2003 Sep 1;75(17):4572-7 [PMID: 14632066]
  36. Lab Chip. 2012 Sep 21;12(18):3267-71 [PMID: 22875258]
  37. Anal Chem. 2008 Sep 15;80(18):6850-9 [PMID: 18714964]
  38. Anal Chem. 2004 Feb 1;76(3):536-44 [PMID: 14750844]
  39. Electrophoresis. 2001 Jan;22(2):242-8 [PMID: 11288891]

Grants

  1. R21 EB016379/NIBIB NIH HHS
  2. 1R21EB016379/NIBIB NIH HHS

MeSH Term

Dopamine
Electrochemical Techniques
Electrodes
Microfluidic Analytical Techniques
Nitric Oxide
Oxygen
Printing, Three-Dimensional

Chemicals

Nitric Oxide
Oxygen
Dopamine

Word Cloud

Created with Highcharts 10.0.00printedelectrode3Dcarbonelectrodes4devicescandetectionplatinumdevice500glassydopamineNO2μMoxygen±blackeasilythreadedreceivingportmicrofluidic1LODlinearR=99concentrationsobtainedusingATPsample8ppmtimesreporttwousedelectrochemicalcaseshousedcommerciallyavailablepolymer-basedfittingsvariousmaterialsgoldsilveraddedenablesmodule-likeapproachexperimentaldesignremovablerepolishedreuseexposurebiologicalsamplesfirstrepresentsplatform×μmchannelallowintegrationeitherpolyetheretherketonePEEKnut-encasedPt-blacknitricoxiderespectivelyembeddedmmlimitnMresponse25-500coated05%NafionsignificantexclusionnitriteobservedcomparedsignalequimolarinjectionsflowinjectionanalysisPt/Pt-blackstandardsderivedgascorrelationwiderange76-190secondapplicationshowcasesfluidicallowscollectionbiologicallyrelevantanalyteadenosinetriphosphatesimultaneouslymeasuringreleasestimulusreducedconcentrationhypoxic5releasednormoxic6Importantlyresultsreportedverifyreproducibletransferablenatureprintingfabricationtechniquemovedlabsmultiplecompletionstudyintegratedversatilereusable

Similar Articles

Cited By