In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays.

Akifumi Fujishiro, Hidekazu Kaneko, Takahiro Kawashima, Makoto Ishida, Takeshi Kawano
Author Information
  1. Akifumi Fujishiro: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
  2. Hidekazu Kaneko: National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
  3. Takahiro Kawashima: Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
  4. Makoto Ishida: 1] Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan [2] Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
  5. Takeshi Kawano: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.

Abstract

Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz-10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology.

References

  1. Nature. 2006 Jul 13;442(7099):164-71 [PMID: 16838014]
  2. J Neurosci Methods. 1998 Jul 1;82(1):1-15 [PMID: 10223510]
  3. Science. 2006 Aug 25;313(5790):1100-4 [PMID: 16931757]
  4. Nat Mater. 2012 Dec;11(12):1065-73 [PMID: 23142839]
  5. Lab Chip. 2005 May;5(5):519-23 [PMID: 15856088]
  6. Nano Lett. 2009 Nov;9(11):3934-9 [PMID: 19691288]
  7. IEEE Trans Biomed Eng. 2000 Mar;47(3):281-9 [PMID: 10743769]
  8. Biosens Bioelectron. 2004 Sep 15;20(2):358-66 [PMID: 15308242]
  9. J Neurosci Methods. 1999 Oct 30;93(1):61-7 [PMID: 10598865]
  10. IEEE Trans Biomed Eng. 2001 Mar;48(3):361-71 [PMID: 11327505]
  11. Front Neuroeng. 2009 Jan 22;2:1 [PMID: 19194527]
  12. Biosensors (Basel). 2011 Aug 15;1(3):118-33 [PMID: 25586924]
  13. Biosens Bioelectron. 2010 Mar 15;25(7):1809-15 [PMID: 20089393]
  14. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9921-5 [PMID: 8790432]
  15. J Neurophysiol. 2007 Mar;97(3):2174-90 [PMID: 17182911]
  16. IEEE Trans Biomed Eng. 1999 Mar;46(3):280-90 [PMID: 10097463]
  17. Brain Res Brain Res Rev. 1992 Jan-Apr;17(1):61-74 [PMID: 1638276]
  18. J Neurophysiol. 1990 Apr;63(4):832-40 [PMID: 2341880]
  19. Biosens Bioelectron. 2011 Jan 15;26(5):2368-75 [PMID: 21093247]
  20. Nature. 2012 May 16;485(7398):372-5 [PMID: 22596161]
  21. IEEE Trans Biomed Eng. 1992 Jun;39(6):635-43 [PMID: 1601445]
  22. IEEE Trans Biomed Eng. 2007 Feb;54(2):262-72 [PMID: 17278583]
  23. Nat Neurosci. 2005 Jun;8(6):752-8 [PMID: 15895084]
  24. J Neurosci Methods. 2005 Oct 15;148(1):1-18 [PMID: 16198003]
  25. Nano Lett. 2006 Apr;6(4):622-5 [PMID: 16608255]
  26. Nat Nanotechnol. 2008 Jul;3(7):434-9 [PMID: 18654569]
  27. Nature. 2002 Mar 14;416(6877):141-2 [PMID: 11894084]
  28. Brain Res. 2003 Sep 5;983(1-2):23-35 [PMID: 12914963]
  29. J Neurophysiol. 2000 Jul;84(1):390-400 [PMID: 10899213]

MeSH Term

Action Potentials
Animals
Cerebral Cortex
Electric Impedance
Male
Microelectrodes
Needles
Neurons
Rats
Silicon

Chemicals

Silicon

Word Cloud

Created with Highcharts 10.0.0needlesneedle-electrodearraysneuronalrecordingsvivomicroscalesiliconactionthree-dimensionalfabricatedexhibitresultspotentialfinepotentiallyofferlowinvasivenesshighspatialresolutionelectrophysiologicalHereinreportpenetratingrecordingcapabilitiessilicon-growth-basedmicroscale-diameterneedle-electrodescircular-coneshape3-μm-diametertip210-μmlengthDuediameterflexiblemicrofabricatedlargerdiametersCoatingmicroscale-needle-tipplatinumblackimpedance~600 kΩsalineoutput/inputsignalamplituderatios90%40 Hz-10 kHzcanpenetratewhiskerbarrelarearat'scerebralcortexpotentialsrecordedneuronspeak-to-peakamplitudes~300 μVppdemonstratefeasibilityarrayusinggrowthtechnologyvia

Similar Articles

Cited By