Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy.

Kenneth Yan, Qiulian Wu, Diana H Yan, Christine H Lee, Nasiha Rahim, Isabel Tritschler, Jennifer DeVecchio, Matthew F Kalady, Anita B Hjelmeland, Jeremy N Rich
Author Information
  1. Kenneth Yan: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; Case Western Reserve University School of Medicine, Cleveland, Ohio 44195, USA; Department of Cell Biology, Case Western Reserve University, Cleveland, Ohio 44195, USA;
  2. Qiulian Wu: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
  3. Diana H Yan: Case Western Reserve University School of Medicine, Cleveland, Ohio 44195, USA;
  4. Christine H Lee: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44195, USA;
  5. Nasiha Rahim: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
  6. Isabel Tritschler: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; Department of Neurology, University Hospital Zurich, Zurich 8091, Switzerland.
  7. Jennifer DeVecchio: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
  8. Matthew F Kalady: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
  9. Anita B Hjelmeland: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
  10. Jeremy N Rich: Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;

Abstract

Glioblastomas are the most prevalent and lethal primary brain tumor and are comprised of hierarchies with self-renewing cancer stem cells (CSCs) at the apex. Like neural stem cells (NSCs), CSCs reside in functional niches that provide essential cues to maintain the cellular hierarchy. Bone morphogenetic proteins (BMPs) instruct NSCs to adopt an astrocyte fate and are proposed as anti-CSC therapies to induce differentiation, but, paradoxically, tumors express high levels of BMPs. Here we demonstrate that the BMP antagonist Gremlin1 is specifically expressed by CSCs as protection from endogenous BMPs. Gremlin1 colocalizes with CSCs in vitro and in vivo. Furthermore, Gremlin1 blocks prodifferentiation effects of BMPs, and overexpression of Gremlin1 in non-CSCs decreases their endogenous BMP signaling to promote stem-like features. Consequently, Gremlin1-overexpressing cells display increased growth and tumor formation abilities. Targeting Gremlin1 in CSCs results in impaired growth and self-renewal. Transcriptional profiling demonstrated that Gremlin1 effects were associated with inhibition of p21(WAF1/CIP1), a key CSC signaling node. This study establishes CSC-derived Gremlin1 as a driving force in maintaining glioblastoma tumor proliferation and glioblastoma hierarchies through the modulation of endogenous prodifferentiation signals.

Keywords

References

  1. Cancer Cell. 2008 Jan;13(1):69-80 [PMID: 18167341]
  2. Cancer Cell. 2012 Dec 11;22(6):765-80 [PMID: 23238013]
  3. Ann Neurol. 2012 Nov;72(5):766-78 [PMID: 23280793]
  4. Nature. 2011 Jan 20;469(7330):415-8 [PMID: 21113151]
  5. Brain. 2010 Jul;133(Pt 7):1961-72 [PMID: 20513660]
  6. Nature. 2006 Dec 7;444(7120):756-60 [PMID: 17051156]
  7. Cell. 2012 Aug 17;150(4):764-79 [PMID: 22901808]
  8. BMC Cancer. 2006 Mar 18;6:74 [PMID: 16545136]
  9. J Immunol. 2012 Jul 1;189(1):444-53 [PMID: 22664874]
  10. Gastroenterology. 2011 Jan;140(1):297-309 [PMID: 20951698]
  11. Nature. 2012 Aug 23;488(7412):522-6 [PMID: 22854781]
  12. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14842-7 [PMID: 17003113]
  13. J Immunol Methods. 2009 Aug 15;347(1-2):70-8 [PMID: 19567251]
  14. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2009 Jul;25(7):637-9 [PMID: 19737484]
  15. EMBO J. 2011 Mar 2;30(5):800-13 [PMID: 21297581]
  16. Stem Cells. 2013 May;31(5):870-81 [PMID: 23339114]
  17. J Neurooncol. 2011 Sep;104(3):801-9 [PMID: 21373969]
  18. Cancer Biol Ther. 2011 Mar 1;11(5):457-63 [PMID: 21178508]
  19. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12846-51 [PMID: 11070094]
  20. Oncogene. 2005 Aug 29;24(37):5713-21 [PMID: 16123804]
  21. Nat Neurosci. 2013 Nov;16(11):1567-75 [PMID: 24097040]
  22. Cancer Cell. 2009 Apr 7;15(4):315-27 [PMID: 19345330]
  23. Expert Rev Neurother. 2006 Jan;6(1):1-3 [PMID: 16466305]
  24. Lab Invest. 2008 Aug;88(8):842-55 [PMID: 18560367]
  25. Nature. 2006 Dec 7;444(7120):761-5 [PMID: 17151667]
  26. Stem Cells. 2009 Oct;27(10):2393-404 [PMID: 19658188]
  27. Cell. 2011 Jul 8;146(1):53-66 [PMID: 21729780]
  28. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  29. Cytokine Growth Factor Rev. 2005 Jun;16(3):265-78 [PMID: 15871922]
  30. Mod Pathol. 2011 Sep;24(9):1248-53 [PMID: 21552211]
  31. Cell Rep. 2013 May 30;3(5):1567-79 [PMID: 23707066]
  32. Nature. 2008 Oct 23;455(7216):1129-33 [PMID: 18948956]
  33. Cancer Res. 2008 Aug 1;68(15):6043-8 [PMID: 18676824]
  34. Cancer Res. 2013 Jan 1;73(1):417-27 [PMID: 23108137]
  35. Cancer Cell. 2013 Feb 11;23(2):238-48 [PMID: 23410976]
  36. Mol Med Rep. 2012 Sep;6(3):615-20 [PMID: 22735990]
  37. Cancer Cell. 2007 Jan;11(1):69-82 [PMID: 17222791]
  38. Nature. 2004 Nov 18;432(7015):396-401 [PMID: 15549107]
  39. Nature. 2002 Dec 12;420(6916):636-42 [PMID: 12478285]
  40. Bioinformatics. 2010 Oct 1;26(19):2363-7 [PMID: 20688976]
  41. PLoS One. 2008;3(11):e3769 [PMID: 19020659]
  42. Blood. 2010 Mar 4;115(9):1690-6 [PMID: 20018913]
  43. Neuro Oncol. 2012 Feb;14(2):215-21 [PMID: 22090453]
  44. J Cell Biochem. 2004 Jan 1;91(1):151-60 [PMID: 14689587]
  45. Cancer Res. 2006 Aug 15;66(16):7843-8 [PMID: 16912155]
  46. Cancer Res. 2011 Oct 15;71(20):6371-81 [PMID: 21859829]
  47. Nature. 2008 Jul 31;454(7204):638-41 [PMID: 18594511]
  48. Nat Med. 2012 Feb 19;18(3):429-35 [PMID: 22344298]
  49. J Neuroimmunol. 2011 Mar;232(1-2):75-82 [PMID: 21056915]
  50. Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):343-55 [PMID: 19897402]
  51. PLoS One. 2012;7(4):e35100 [PMID: 22514712]
  52. Cancer Cell. 2010 Dec 14;18(6):655-68 [PMID: 21156287]
  53. Cell. 2013 Mar 28;153(1):139-52 [PMID: 23540695]
  54. Biochem Biophys Res Commun. 2002 Aug 2;295(5):1135-41 [PMID: 12135612]
  55. Nature. 2001 Nov 1;414(6859):105-11 [PMID: 11689955]
  56. J Biol Chem. 2009 Jun 19;284(25):16705-16709 [PMID: 19286664]
  57. Zhonghua Yi Xue Za Zhi. 2002 Jan 25;82(2):90-3 [PMID: 11953135]
  58. Dev Cell. 2008 Feb;14(2):159-69 [PMID: 18267085]
  59. PLoS One. 2011 Jan 13;6(1):e16078 [PMID: 21249149]
  60. Nature. 2008 Oct 23;455(7216):1061-8 [PMID: 18772890]
  61. Cell Stem Cell. 2013 Jan 3;12(1):88-100 [PMID: 23260487]
  62. Biochem Biophys Res Commun. 2011 Mar 25;406(4):643-8 [PMID: 21371437]
  63. Mol Cancer. 2006 Dec 02;5:67 [PMID: 17140455]
  64. Stem Cells. 2013 Jun;31(6):1051-63 [PMID: 23404835]
  65. Cell Death Differ. 2012 Oct;19(10):1644-54 [PMID: 22539003]
  66. Jpn J Clin Oncol. 2009 Oct;39(10):625-31 [PMID: 19797419]
  67. J Biol Chem. 2006 Nov 17;281(46):34742-50 [PMID: 16923815]
  68. Biochem Biophys Res Commun. 2001 Jul 20;285(3):773-81 [PMID: 11453659]
  69. Biochem J. 2010 Jul 1;429(1):1-12 [PMID: 20545624]
  70. Neuro Oncol. 2013 Jan;15(1):4-27 [PMID: 23136223]
  71. Expert Opin Biol Ther. 2012 Aug;12(8):1101-11 [PMID: 22663137]
  72. Cell Signal. 2007 Jul;19(7):1465-72 [PMID: 17317101]
  73. PLoS One. 2012;7(8):e42264 [PMID: 22870311]
  74. Cell Stem Cell. 2009 Nov 6;5(5):504-14 [PMID: 19896441]
  75. Nat Rev Cancer. 2009 Jun;9(6):400-14 [PMID: 19440234]
  76. Cancer Cell. 2013 May 13;23(5):660-76 [PMID: 23680149]
  77. Oncogene. 2004 Dec 16;23(58):9326-35 [PMID: 15531927]
  78. Trends Cell Biol. 2010 May;20(5):244-56 [PMID: 20188563]

Grants

  1. TL1 TR000441/NCATS NIH HHS
  2. R01 CA151522/NCI NIH HHS
  3. CA154130/NCI NIH HHS
  4. CA1129958/NCI NIH HHS
  5. TR000441/NCATS NIH HHS
  6. F30 CA165892/NCI NIH HHS
  7. CA165892/NCI NIH HHS
  8. UL1 TR000439/NCATS NIH HHS
  9. CA151522/NCI NIH HHS
  10. T32 GM007250/NIGMS NIH HHS
  11. R01 CA154130/NCI NIH HHS

MeSH Term

Animals
Bone Morphogenetic Protein 2
Cell Cycle
Cell Proliferation
Cyclin-Dependent Kinase Inhibitor p21
Gene Expression Regulation, Neoplastic
Gene Knockdown Techniques
Glioma
Heterografts
Humans
Intercellular Signaling Peptides and Proteins
Mice
Neoplastic Stem Cells
Signal Transduction

Chemicals

BMP2 protein, human
Bone Morphogenetic Protein 2
CDKN1A protein, human
Cyclin-Dependent Kinase Inhibitor p21
GREM1 protein, human
Intercellular Signaling Peptides and Proteins

Word Cloud

Created with Highcharts 10.0.0Gremlin1stemcellsCSCsBMPstumorhierarchiescancerBMPendogenousglioblastomaNSCshierarchymorphogeneticproteinsprodifferentiationeffectssignalingpromotegrowthGlioblastomasprevalentlethalprimarybraincomprisedself-renewingapexLikeneuralresidefunctionalnichesprovideessentialcuesmaintaincellularBoneinstructadoptastrocytefateproposedanti-CSCtherapiesinducedifferentiationparadoxicallytumorsexpresshighlevelsdemonstrateantagonistspecificallyexpressedprotectioncolocalizesvitrovivoFurthermoreblocksoverexpressionnon-CSCsdecreasesstem-likefeaturesConsequentlyGremlin1-overexpressingdisplayincreasedformationabilitiesTargetingresultsimpairedself-renewalTranscriptionalprofilingdemonstratedassociatedinhibitionp21WAF1/CIP1keyCSCnodestudyestablishesCSC-deriveddrivingforcemaintainingproliferationmodulationsignalsGliomasecretemaintenancewithinantagonistsbonecell

Similar Articles

Cited By (88)