Comparison of spa types, SCCmec types and antimicrobial resistance profiles of MRSA isolated from turkeys at farm, slaughter and from retail meat indicates transmission along the production chain.

Birgit Vossenkuhl, Jörgen Brandt, Alexandra Fetsch, Annemarie Käsbohrer, Britta Kraushaar, Katja Alt, Bernd-Alois Tenhagen
Author Information
  1. Birgit Vossenkuhl: Federal Institute for Risk Assessment, Berlin, Germany.
  2. Jörgen Brandt: Federal Institute for Risk Assessment, Berlin, Germany.
  3. Alexandra Fetsch: Federal Institute for Risk Assessment, Berlin, Germany.
  4. Annemarie Käsbohrer: Federal Institute for Risk Assessment, Berlin, Germany.
  5. Britta Kraushaar: Federal Institute for Risk Assessment, Berlin, Germany.
  6. Katja Alt: Federal Institute for Risk Assessment, Berlin, Germany.
  7. Bernd-Alois Tenhagen: Federal Institute for Risk Assessment, Berlin, Germany.

Abstract

The prevalence of MRSA in the turkey meat production chain in Germany was estimated within the national monitoring for zoonotic agents in 2010. In total 22/112 (19.6%) dust samples from turkey farms, 235/359 (65.5%) swabs from turkey carcasses after slaughter and 147/460 (32.0%) turkey meat samples at retail were tested positive for MRSA. The specific distributions of spa types, SCCmec types and antimicrobial resistance profiles of MRSA isolated from these three different origins were compared using chi square statistics and the proportional similarity index (Czekanowski index). No significant differences between spa types, SCCmec types and antimicrobial resistance profiles of MRSA from different steps of the German turkey meat production chain were observed using Chi-Square test statistics. The Czekanowski index which can obtain values between 0 (no similarity) and 1 (perfect agreement) was consistently high (0.79-0.86) for the distribution of spa types and SCCmec types between the different processing stages indicating high degrees of similarity. The comparison of antimicrobial resistance profiles between the different process steps revealed the lowest Czekanowski index values (0.42-0.56). However, the Czekanowski index values were substantially higher than the index when isolates from the turkey meat production chain were compared to isolates from wild boar meat (0.13-0.19), an example of a separated population of MRSA used as control group. This result indicates that the proposed statistical method is valid to detect existing differences in the distribution of the tested characteristics of MRSA. The degree of similarity in the distribution of spa types, SCCmec types and antimicrobial resistance profiles between MRSA isolates from different process stages of turkey meat production may reflect MRSA transmission along the chain.

References

  1. J Food Prot. 2013 Jun;76(6):1095-108 [PMID: 23726208]
  2. Int J Antimicrob Agents. 2011 Jul;38(1):86-7 [PMID: 21550786]
  3. Emerg Infect Dis. 2011 Jun;17(6):1135-7 [PMID: 21749794]
  4. J Clin Microbiol. 2007 Jun;45(6):1830-7 [PMID: 17428929]
  5. Emerg Infect Dis. 2009 Jan;15(1):136-7; author reply 136-7 [PMID: 19116081]
  6. Vet Res. 2001 May-Aug;32(3-4):201-25 [PMID: 11432414]
  7. J Antimicrob Chemother. 2009 Oct;64(4):680-3 [PMID: 19684078]
  8. Antimicrob Agents Chemother. 2008 Oct;52(10):3817-9 [PMID: 18663024]
  9. Appl Environ Microbiol. 2011 Oct;77(20):7151-7 [PMID: 21724898]
  10. Eur J Clin Microbiol Infect Dis. 1996 Jan;15(1):60-4 [PMID: 8641305]
  11. J Clin Microbiol. 2000 Mar;38(3):1008-15 [PMID: 10698988]
  12. Antimicrob Agents Chemother. 2009 Dec;53(12):4961-7 [PMID: 19721075]
  13. BMC Vet Res. 2011 Nov 10;7:69 [PMID: 22074403]
  14. J Food Prot. 2001 Dec;64(12):2063-6 [PMID: 11770639]
  15. Emerg Infect Dis. 2009 Mar;15(3):452-3 [PMID: 19239762]
  16. Vet Microbiol. 2008 Apr 30;128(3-4):298-303 [PMID: 18023542]
  17. J Food Prot. 1999 Oct;62(10):1150-6 [PMID: 10528718]
  18. Zoonoses Public Health. 2011 Jun;58(4):252-61 [PMID: 20630047]
  19. FEMS Microbiol Rev. 2012 Jul;36(4):815-36 [PMID: 22091892]
  20. Epidemiol Infect. 2012 Dec;140(12):2223-32 [PMID: 22321516]
  21. Prev Vet Med. 2003 Oct 15;61(2):91-102 [PMID: 14519339]
  22. Prev Vet Med. 2011 Oct 1;102(1):41-9 [PMID: 21733585]
  23. Microb Drug Resist. 2012 Apr;18(2):125-31 [PMID: 22088147]
  24. J Clin Microbiol. 1999 Nov;37(11):3556-63 [PMID: 10523551]
  25. Int J Food Microbiol. 2009 Aug 31;134(1-2):52-6 [PMID: 19144432]
  26. J Clin Microbiol. 2009 Dec;47(12):4138-40 [PMID: 19812280]
  27. PLoS One. 2012;7(2):e31245 [PMID: 22363594]
  28. Lancet Infect Dis. 2011 Aug;11(8):595-603 [PMID: 21641281]
  29. J Dairy Sci. 2012 Aug;95(8):4382-8 [PMID: 22818451]
  30. Clin Infect Dis. 2011 May;52(10):1227-30 [PMID: 21498385]
  31. Lett Appl Microbiol. 2010 Jan;50(1):127-30 [PMID: 19843206]
  32. J Microbiol Biotechnol. 2010 Apr;20(4):775-8 [PMID: 20467252]
  33. Euro Surveill. 2009 Dec 10;14(49): [PMID: 20003904]
  34. Appl Environ Microbiol. 2009 Jan;75(1):265-7 [PMID: 18978079]
  35. Appl Environ Microbiol. 1985 Jun;49(6):1507-10 [PMID: 4015088]
  36. J Infect Public Health. 2011 Sep;4(4):169-74 [PMID: 22000843]
  37. Foodborne Pathog Dis. 2009 May;6(4):417-24 [PMID: 19415971]
  38. Int J Antimicrob Agents. 2012 May;39(5):449-51 [PMID: 22440926]
  39. Emerg Infect Dis. 2005 May;11(5):711-4 [PMID: 15890125]
  40. J Antimicrob Chemother. 2009 Dec;64(6):1325-6 [PMID: 19850566]
  41. Euro Surveill. 2010 Oct 14;15(41):19688 [PMID: 20961515]
  42. Epidemiol Infect. 2010 May;138(5):606-25 [PMID: 20122300]
  43. Vet Microbiol. 2009 Nov 18;139(3-4):405-9 [PMID: 19608357]
  44. Emerg Infect Dis. 2005 Dec;11(12):1965-6 [PMID: 16485492]
  45. J Clin Microbiol. 2005 Oct;43(10):5026-33 [PMID: 16207957]
  46. Zentralbl Bakteriol B. 1979 Jun;168(5-6):546-61 [PMID: 159590]
  47. PLoS One. 2010 Jun 08;5(6):e10990 [PMID: 20544020]
  48. J Antimicrob Chemother. 2003 Feb;51(2):419-21 [PMID: 12562714]
  49. Epidemiol Infect. 2010 May;138(5):743-55 [PMID: 20109255]
  50. Vet Microbiol. 2007 Jun 21;122(3-4):366-72 [PMID: 17367960]
  51. Emerg Infect Dis. 2007 Nov;13(11):1753-5 [PMID: 18217563]
  52. Can Vet J. 2010 Jul;51(7):749-52 [PMID: 20885828]
  53. PLoS One. 2009;4(1):e4258 [PMID: 19145257]

MeSH Term

Animals
Animals, Domestic
Anti-Bacterial Agents
Cross-Sectional Studies
Food Microbiology
Germany
Meat Products
Methicillin-Resistant Staphylococcus aureus
Molecular Typing
Poultry Diseases
Staphylococcal Infections
Turkeys
Zoonoses

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0typesMRSAturkeymeatindexproductionchainspaSCCmecantimicrobialresistanceprofilesdifferentsimilarityCzekanowski0valuesdistributionisolates19samplesslaughterretailtestedisolatedcomparedusingstatisticsdifferencesstepshighstagesprocessindicatestransmissionalongprevalenceGermanyestimatedwithinnationalmonitoringzoonoticagents2010total22/1126%dustfarms235/359655%swabscarcasses147/460320%positivespecificdistributionsthreeoriginschisquareproportionalsignificantGermanobservedChi-Squaretestcanobtain1perfectagreementconsistently79-086processingindicatingdegreescomparisonrevealedlowest42-056Howeversubstantiallyhigherwildboar13-0exampleseparatedpopulationusedcontrolgroupresultproposedstatisticalmethodvaliddetectexistingcharacteristicsdegreemayreflectComparisonturkeysfarm

Similar Articles

Cited By