Integrated platform and API for electrophysiological data.

Andrey Sobolev, Adrian Stoewer, Aljoscha Leonhardt, Philipp L Rautenberg, Christian J Kellner, Christian Garbers, Thomas Wachtler
Author Information
  1. Andrey Sobolev: Department Biology II, German Neuroinformatics Node, Ludwig-Maximilians-Universität München Planegg, Germany.
  2. Adrian Stoewer: Department Biology II, German Neuroinformatics Node, Ludwig-Maximilians-Universität München Planegg, Germany.
  3. Aljoscha Leonhardt: Department Biology II, German Neuroinformatics Node, Ludwig-Maximilians-Universität München Planegg, Germany.
  4. Philipp L Rautenberg: Department Biology II, German Neuroinformatics Node, Ludwig-Maximilians-Universität München Planegg, Germany.
  5. Christian J Kellner: Department Biology II, German Neuroinformatics Node, Ludwig-Maximilians-Universität München Planegg, Germany.
  6. Christian Garbers: Department Biology II, German Neuroinformatics Node, Ludwig-Maximilians-Universität München Planegg, Germany.
  7. Thomas Wachtler: Department Biology II, German Neuroinformatics Node, Ludwig-Maximilians-Universität München Planegg, Germany.

Abstract

Recent advancements in technology and methodology have led to growing amounts of increasingly complex neuroscience data recorded from various species, modalities, and levels of study. The rapid data growth has made efficient data access and flexible, machine-readable data annotation a crucial requisite for neuroscientists. Clear and consistent annotation and organization of data is not only an important ingredient for reproducibility of results and re-use of data, but also essential for collaborative research and data sharing. In particular, efficient data management and interoperability requires a unified approach that integrates data and metadata and provides a common way of accessing this information. In this paper we describe GNData, a data management platform for neurophysiological data. GNData provides a storage system based on a data representation that is suitable to organize data and metadata from any electrophysiological experiment, with a functionality exposed via a common application programming interface (API). Data representation and API structure are compatible with existing approaches for data and metadata representation in neurophysiology. The API implementation is based on the Representational State Transfer (REST) pattern, which enables data access integration in software applications and facilitates the development of tools that communicate with the service. Client libraries that interact with the API provide direct data access from computing environments like Matlab or Python, enabling integration of data management into the scientist's experimental or analysis routines.

Keywords

References

  1. Neuroinformatics. 2008 Spring;6(1):47-55 [PMID: 18259695]
  2. Neuroinformatics. 2007 Spring;5(1):11-34 [PMID: 17426351]
  3. Front Neuroinform. 2011 Aug 30;5:16 [PMID: 21941477]
  4. Front Neuroinform. 2014 Feb 20;8:10 [PMID: 24600386]
  5. Front Neuroinform. 2014 Mar 05;8:15 [PMID: 24634654]
  6. Front Neuroinform. 2014 Mar 07;8:20 [PMID: 24639646]
  7. Neuroinformatics. 2008 Sep;6(3):149-60 [PMID: 18946742]
  8. Brief Bioinform. 2007 May;8(3):150-62 [PMID: 17510162]
  9. Nat Neurosci. 2004 May;7(5):486-7 [PMID: 15114365]
  10. Neural Netw. 2008 Oct;21(8):1070-5 [PMID: 18653312]

Word Cloud

Created with Highcharts 10.0.0dataAPImanagementaccessmetadatarepresentationefficientannotationprovidescommonGNDataplatformbasedelectrophysiologicalintegrationserviceRecentadvancementstechnologymethodologyledgrowingamountsincreasinglycomplexneurosciencerecordedvariousspeciesmodalitieslevelsstudyrapidgrowthmadeflexiblemachine-readablecrucialrequisiteneuroscientistsClearconsistentorganizationimportantingredientreproducibilityresultsre-usealsoessentialcollaborativeresearchsharingparticularinteroperabilityrequiresunifiedapproachintegrateswayaccessinginformationpaperdescribeneurophysiologicalstoragesystemsuitableorganizeexperimentfunctionalityexposedviaapplicationprogramminginterfaceDatastructurecompatibleexistingapproachesneurophysiologyimplementationRepresentationalStateTransferRESTpatternenablessoftwareapplicationsfacilitatesdevelopmenttoolscommunicateClientlibrariesinteractprovidedirectcomputingenvironmentslikeMatlabPythonenablingscientist'sexperimentalanalysisroutinesIntegratedcollaborationelectrophysiologyneoneuroinformaticsodmlweb

Similar Articles

Cited By