Genome scale modeling in systems biology: algorithms and resources.

Ali Najafi, Gholamreza Bidkhori, Joseph H Bozorgmehr, Ina Koch, Ali Masoudi-Nejad
Author Information
  1. Ali Najafi: Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Iran;
  2. Gholamreza Bidkhori: Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Iran;
  3. Joseph H Bozorgmehr: Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Iran;
  4. Ina Koch: Molecular Bioinformatics, Johann Wolfgang Goethe-University Frankfurt am Main, Germany.
  5. Ali Masoudi-Nejad: Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Iran;

Abstract

In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics.

Keywords

References

  1. In Silico Biol. 2005;5(2):163-78 [PMID: 15972012]
  2. Mol Microbiol. 2006 Dec;62(5):1239-50 [PMID: 17040488]
  3. Sci Signal. 2011 Sep 20;4(192):tr12 [PMID: 21954293]
  4. Methods Mol Biol. 2009;500:17-59 [PMID: 19399433]
  5. Bioinformatics. 2011 Feb 1;27(3):431-2 [PMID: 21149340]
  6. Math Biosci. 2003 Sep;185(1):1-13 [PMID: 12900139]
  7. Nat Rev Microbiol. 2009 Feb;7(2):129-43 [PMID: 19116616]
  8. Chem Biodivers. 2010 May;7(5):1163-72 [PMID: 20491073]
  9. Analyst. 2000 Jan;125(1):29-33 [PMID: 10885063]
  10. In Silico Biol. 2010;10(1):5-26 [PMID: 22430219]
  11. Nat Chem Biol. 2010 Nov;6(11):787-9 [PMID: 20976870]
  12. Trends Biochem Sci. 2001 Mar;26(3):179-86 [PMID: 11246024]
  13. Bioinformatics. 2010 Jul 15;26(14):1779-80 [PMID: 20511363]
  14. Science. 2002 Mar 1;295(5560):1662-4 [PMID: 11872829]
  15. BMC Bioinformatics. 2008 Feb 08;9:90 [PMID: 18257938]
  16. Bioinformatics. 2005 Dec 15;21(24):4401-7 [PMID: 16234320]
  17. Mol Biol Cell. 2006 Mar;17(3):1141-53 [PMID: 16407412]
  18. IET Syst Biol. 2011 May;5(3):185-207 [PMID: 21639592]
  19. Cell Signal. 2011 Feb;23(2):417-24 [PMID: 20946955]
  20. Brief Bioinform. 2009 Jul;10(4):450-61 [PMID: 19293250]
  21. Comput Biol Med. 1996 Jan;26(1):9-24 [PMID: 8654057]
  22. J Theor Biol. 2002 Dec 7;219(3):343-70 [PMID: 12419662]
  23. OMICS. 2004 Summer;8(2):131-52 [PMID: 15268772]
  24. Front Plant Sci. 2012 Jul 20;3:155 [PMID: 22833747]
  25. Biochem Soc Trans. 2003 Dec;31(Pt 6):1513-5 [PMID: 14641101]
  26. Eur J Biochem. 1974 Feb 15;42(1):89-95 [PMID: 4830198]
  27. J Biol Chem. 2003 Nov 21;278(47):46446-51 [PMID: 12963713]
  28. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  29. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  30. Clin Chem. 2002 Jan;48(1):25-34 [PMID: 11751535]
  31. PLoS One. 2011;6(11):e25110 [PMID: 22132067]
  32. Chem Biodivers. 2005 Feb;2(2):233-43 [PMID: 17191976]
  33. Stud Health Technol Inform. 2011;162:160-81 [PMID: 21685571]
  34. Planta Med. 2011 Nov;77(16):1774-81 [PMID: 21614750]
  35. Brief Bioinform. 2006 Dec;7(4):399-406 [PMID: 17032698]
  36. Bioinformatics. 2013 Jun 1;29(11):1469-70 [PMID: 23564846]
  37. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D504-6 [PMID: 16381921]
  38. In Silico Biol. 2006;6(1-2):1-13 [PMID: 16789909]
  39. Nat Rev Genet. 2006 Feb;7(2):119-29 [PMID: 16418747]
  40. Cell Cycle. 2009 Mar 1;8(5):705-11 [PMID: 19242111]
  41. Bioinformatics. 2001 Dec;17(12):1183-97 [PMID: 11751227]
  42. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 [PMID: 23203871]
  43. Bioinformatics. 2004 Jan 22;20(2):226-34 [PMID: 14734314]
  44. Pac Symp Biocomput. 2000;:341-52 [PMID: 10902182]
  45. Phys Biol. 2012 Oct;9(5):055001 [PMID: 23011283]
  46. Comput Biol Med. 2011 Jul;41(7):512-28 [PMID: 21632045]
  47. J Am Med Inform Assoc. 2005 Mar-Apr;12(2):181-99 [PMID: 15561791]
  48. Methods. 2013 Jul 15;62(1):3-12 [PMID: 23142247]
  49. BMC Bioinformatics. 2006 Mar 06;7:109 [PMID: 16519817]
  50. Biosystems. 2009 Mar;95(3):234-42 [PMID: 19056461]
  51. Aging (Albany NY). 2011 Mar;3(3):192-222 [PMID: 21422497]
  52. Trends Biotechnol. 2006 Dec;24(12):571-9 [PMID: 17045684]
  53. J Mol Graph. 1996 Aug;14(4):227-31, 226 [PMID: 9076636]
  54. Lasers Med Sci. 2010 Nov;25(6):767-71 [PMID: 20535519]
  55. Methods Mol Biol. 2011;696:413-27 [PMID: 21063963]
  56. Sci Signal. 2011 Sep 06;4(190):tr5 [PMID: 21917719]
  57. BMC Syst Biol. 2011 Oct 11;5:159 [PMID: 21989196]
  58. BMC Bioinformatics. 2006 Mar 06;7:111 [PMID: 16519800]
  59. Biochim Biophys Acta. 2010 Sep;1803(9):991-1002 [PMID: 20399811]
  60. PLoS One. 2012;7(10):e48004 [PMID: 23133538]
  61. BMC Bioinformatics. 2007 Nov 26;8:462 [PMID: 18039375]
  62. Nat Biotechnol. 2013 May;31(5):419-25 [PMID: 23455439]
  63. Biostatistics. 2013 Jul;14(3):573-85 [PMID: 23428933]
  64. Bioinformatics. 2002 Feb;18(2):351-61 [PMID: 11847093]
  65. Biosens Bioelectron. 2005 Jun 15;20(12):2404-7 [PMID: 15854815]
  66. PLoS One. 2012;7(6):e39643 [PMID: 22737250]
  67. Bull Math Biol. 2011 Jul;73(7):1583-602 [PMID: 20878493]
  68. Pac Symp Biocomput. 2001;:422-33 [PMID: 11262961]
  69. Nat Biotechnol. 2005 Dec;23(12):1509-15 [PMID: 16333295]
  70. Bioinformatics. 2010 May 15;26(10):1381-3 [PMID: 20371497]
  71. J R Soc Interface. 2005 Dec 22;2(5):419-30 [PMID: 16849202]
  72. Nat Biotechnol. 2007 Aug;25(8):887-93 [PMID: 17687369]
  73. Biosystems. 2008 May;92(2):189-205 [PMID: 18372101]
  74. Biosystems. 2011 Mar;103(3):410-9 [PMID: 21145369]
  75. IEEE Trans Nanobioscience. 2010 Dec;9(4):225-31 [PMID: 20729175]
  76. ScientificWorldJournal. 2009 May 29;9:420-3 [PMID: 19484163]
  77. In Silico Biol. 2010;10(1):89-123 [PMID: 22430224]
  78. Methods Enzymol. 2011;487:217-51 [PMID: 21187227]
  79. Biochem J. 2005 Dec 1;392(Pt 2):249-61 [PMID: 16293107]
  80. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6750-5 [PMID: 9618484]
  81. Theor Biol Med Model. 2011 Jun 22;8:21 [PMID: 21696623]
  82. Comput Biol Chem. 2007 Feb;31(1):1-10 [PMID: 17097351]
  83. In Silico Biol. 2003;3(3):367-87 [PMID: 14700469]
  84. J Biomech. 2006;39(14):2638-46 [PMID: 16223502]
  85. Bioinformatics. 2005 Apr 1;21(7):1219-26 [PMID: 15546934]
  86. Nat Struct Mol Biol. 2009 Mar;16(3):294-303 [PMID: 19219045]
  87. Mol Biol Cell. 2011 Jun 15;22(12):2119-30 [PMID: 21508312]
  88. Bioessays. 2002 Dec;24(12):1110-7 [PMID: 12447976]
  89. Comput Biol Chem. 2009 Feb;33(1):46-61 [PMID: 18775676]
  90. FASEB J. 2004 Apr;18(6):731-3 [PMID: 14766791]
  91. Wiley Interdiscip Rev Syst Biol Med. 2010 Mar-Apr;2(2):194-209 [PMID: 20836022]
  92. Syst Biol (Stevenage). 2006 Sep;153(5):379-84 [PMID: 16986322]
  93. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W466-71 [PMID: 16845051]
  94. J Biol Dyn. 2010 Mar;4(2):196-211 [PMID: 22876986]
  95. BMC Syst Biol. 2011 Aug 11;5:124 [PMID: 21835028]
  96. PLoS Comput Biol. 2007 Aug;3(8):e129 [PMID: 17784779]
  97. Genome Biol. 2005;6(7):224 [PMID: 15998455]
  98. Bioinformatics. 2005 Dec 15;21(24):4432-3 [PMID: 16188923]
  99. Methods Mol Biol. 2011;696:291-303 [PMID: 21063955]
  100. Mol Syst Biol. 2005;1:2005.0010 [PMID: 16729045]
  101. BMC Bioinformatics. 2006 Nov 02;7:482 [PMID: 17081284]
  102. Brief Bioinform. 2007 Jul;8(4):210-9 [PMID: 17626066]
  103. J Theor Biol. 1993 Jan 7;160(1):97-133 [PMID: 8474249]
  104. Nat Biotechnol. 2004 Oct;22(10):1249-52 [PMID: 15470464]
  105. BioData Min. 2011 Apr 28;4:10 [PMID: 21527005]
  106. Cell. 2005 May 20;121(4):503-504 [PMID: 15907462]
  107. Bioinformatics. 2006 Mar 1;22(5):628-9 [PMID: 16410323]
  108. Bioinformatics. 2003 Mar 1;19(4):524-31 [PMID: 12611808]
  109. Methods Mol Biol. 2012;786:359-94 [PMID: 21938637]
  110. J Chem Phys. 2007 Oct 21;127(15):155105 [PMID: 17949221]
  111. Trends Biotechnol. 2010 Jul;28(7):381-90 [PMID: 20570001]
  112. Leukemia. 2008 Apr;22(4):708-22 [PMID: 18337766]
  113. Biochem Biophys Res Commun. 2010 Aug 20;399(2):262-7 [PMID: 20655296]
  114. Nat Rev Mol Cell Biol. 2008 Oct;9(10):770-80 [PMID: 18797474]
  115. Nat Rev Mol Cell Biol. 2005 Feb;6(2):99-111 [PMID: 15654321]
  116. Sci STKE. 2002 Sep 03;2002(148):pe38 [PMID: 12209052]
  117. Theor Biol Med Model. 2007 Dec 21;4:50 [PMID: 18154660]
  118. Semin Cancer Biol. 2015 Feb;30:21-9 [PMID: 24495661]
  119. Science. 2002 Oct 25;298(5594):824-7 [PMID: 12399590]
  120. Biochimie. 2006 Mar-Apr;88(3-4):277-83 [PMID: 16213652]
  121. BMC Syst Biol. 2009 Sep 22;3:97 [PMID: 19772631]
  122. J Theor Biol. 1997 Feb 7;184(3):229-235 [PMID: 31940735]
  123. IET Syst Biol. 2009 Sep;3(5):317-28 [PMID: 21028923]

Word Cloud

Created with Highcharts 10.0.0biologicalmodelingsystemsnetworksexperimentalalgorithmscellulardescriptionsystemcannetworkanalysisquantitativesimulatingbiologyunderstandingprocessesapproachesresearchersdevelopmentrecentyearssilicostudiestrialsimulationscomplementedproceduresmodelcollectioninterrelatedobjectsobjectmoreoverelementalunituponobservationsmadewhoseinternalstructureeitherexistignoredThereforeapproachcriticalsuccessfulreviewhighlightspopularimportanttoolsemergingstandardsrepresentinganalyzingfivesectionsAlsotryshowconceptsmeanssimpleexampleproperimagesgraphsOverallaimsholisticintegrationanalyticalalongsyntheticcomputationalmodelsfactdevelopedplatformintegratinginformationhighlow-throughputexperimentsprovideoverviewusedwaybecomeeasilyunderstandablemathematicalbackgroundsConsequentlygivencomplexitygenerateddatasurpriseturnedcomputersimulationtheory-basedaugmentassistfullydynamicsGenomescalebiology:resourcesBiologicalGenome-scaleModelingSystems

Similar Articles

Cited By