Phylogenetic diversity of Mesorhizobium in chickpea.

Dong Hyun Kim, Mayank Kaashyap, Abhishek Rathore, Roma R Das, Swathi Parupalli, Hari D Upadhyaya, S Gopalakrishnan, Pooran M Gaur, Sarvjeet Singh, Jagmeet Kaur, Mohammad Yasin, Rajeev K Varshney
Author Information
  1. Dong Hyun Kim: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India.

Abstract

Crop domestication, in general, has reduced genetic diversity in cultivated gene pool of chickpea (Cicer arietinum) as compared with wild species (C. reticulatum, C. bijugum). To explore impact of domestication on symbiosis, 10 accessions of chickpeas, including 4 accessions of C. arietinum, and 3 accessions of each of C. reticulatum and C. bijugum species, were selected and DNAs were extracted from their nodules. To distinguish chickpea symbiont, preliminary sequences analysis was attempted with 9 genes (16S rRNA, atpD, dnaJ, glnA, gyrB, nifH, nifK, nodD and recA) of which 3 genes (gyrB, nifK and nodD) were selected based on sufficient sequence diversity for further phylogenetic analysis. Phylogenetic analysis and sequence diversity for 3 genes demonstrated that sequences from C. reticulatum were more diverse. Nodule occupancy by dominant symbiont also indicated that C. reticulatum (60 percent) could have more various symbionts than cultivated chickpea (80 percent). The study demonstrated that wild chickpeas (C. reticulatum) could be used for selecting more diverse symbionts in the field conditions and it implies that chickpea domestication affected symbiosis negatively in addition to reducing genetic diversity.

References

  1. J Biotechnol. 2011 Aug 20;155(1):11-9 [PMID: 21458507]
  2. Science. 2004 Sep 17;305(5691):1786-9 [PMID: 15375271]
  3. FEMS Microbiol Ecol. 2008 Nov;66(2):391-400 [PMID: 18795953]
  4. Syst Appl Microbiol. 2012 Sep;35(6):359-67 [PMID: 22817876]
  5. Nature. 2013 Jul 4;499(7456):23-4 [PMID: 23823779]
  6. PLoS One. 2012;7(12):e52443 [PMID: 23300670]
  7. Int J Syst Evol Microbiol. 2010 Apr;60(Pt 4):958-962 [PMID: 19661514]
  8. Proc Biol Sci. 2007 Dec 22;274(1629):3119-26 [PMID: 17939985]
  9. BMC Genomics. 2012 Dec 27;13:735 [PMID: 23270491]
  10. Annu Rev Plant Biol. 2013;64:47-70 [PMID: 23451788]
  11. J Evol Biol. 2010 May;23(5):1075-89 [PMID: 20345811]
  12. J Bacteriol. 1991 Jan;173(2):697-703 [PMID: 1987160]
  13. Microbiology (Reading). 2001 Apr;147(Pt 4):981-993 [PMID: 11283294]
  14. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  15. Nat Biotechnol. 2013 Mar;31(3):240-6 [PMID: 23354103]
  16. Appl Environ Microbiol. 2010 Jul;76(14):4593-600 [PMID: 20472725]
  17. Trends Plant Sci. 2013 Dec;18(12):704-14 [PMID: 24035234]
  18. Theor Appl Genet. 2009 Feb;118(3):483-97 [PMID: 18979081]
  19. Cell. 2006 Dec 29;127(7):1309-21 [PMID: 17190597]
  20. J Biotechnol. 2001 Oct 4;91(2-3):143-53 [PMID: 11566386]
  21. Int J Syst Evol Microbiol. 2007 Mar;57(Pt 3):489-503 [PMID: 17329774]
  22. BMC Bioinformatics. 2010 Mar 24;11:152 [PMID: 20334679]

MeSH Term

Cicer
Crops, Agricultural
DNA, Fungal
Genetic Variation
Mesorhizobium
Phylogeny
Population Dynamics
RNA, Ribosomal, 16S
Sequence Analysis, DNA
Symbiosis

Chemicals

DNA, Fungal
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0Cdiversitychickpeareticulatumdomesticationaccessions3analysisgenesgeneticcultivatedarietinumwildspeciesbijugumsymbiosischickpeasselectedsymbiontsequencesgyrBnifKnodDsequencePhylogeneticdemonstrateddiversepercentsymbiontsCropgeneralreducedgenepoolCicercomparedexploreimpact10including4DNAsextractednodulesdistinguishpreliminaryattempted916SrRNAatpDdnaJglnAnifHrecAbasedsufficientphylogeneticNoduleoccupancydominantalsoindicated60various80studyusedselectingfieldconditionsimpliesaffectednegativelyadditionreducingMesorhizobium

Similar Articles

Cited By (15)