Multiple memory systems as substrates for multiple decision systems.

Bradley B Doll, Daphna Shohamy, Nathaniel D Daw
Author Information
  1. Bradley B Doll: Center for Neural Science, New York University, New York, NY, United States; Department of Psychology, Columbia University, New York, NY, United States. Electronic address: bradley.doll@nyu.edu.
  2. Daphna Shohamy: Department of Psychology, Columbia University, New York, NY, United States.
  3. Nathaniel D Daw: Center for Neural Science, New York University, New York, NY, United States; Department of Psychology, New York University, New York, NY, United States.

Abstract

It has recently become widely appreciated that value-based decision making is supported by multiple computational strategies. In particular, animal and human behavior in learning tasks appears to include habitual responses described by prominent model-free reinforcement learning (RL) theories, but also more deliberative or goal-directed actions that can be characterized by a different class of theories, model-based RL. The latter theories evaluate actions by using a representation of the contingencies of the task (as with a learned map of a spatial maze), called an "internal model." Given the evidence of behavioral and neural dissociations between these approaches, they are often characterized as dissociable learning systems, though they likely interact and share common mechanisms. In many respects, this division parallels a longstanding dissociation in cognitive neuroscience between multiple memory systems, describing, at the broadest level, separate systems for declarative and procedural learning. Procedural learning has notable parallels with model-free RL: both involve learning of habits and both are known to depend on parts of the striatum. Declarative memory, by contrast, supports memory for single events or episodes and depends on the hippocampus. The hippocampus is thought to support declarative memory by encoding temporal and spatial relations among stimuli and thus is often referred to as a relational memory system. Such relational encoding is likely to play an important role in learning an internal model, the representation that is central to model-based RL. Thus, insofar as the memory systems represent more general-purpose cognitive mechanisms that might subserve performance on many sorts of tasks including decision making, these parallels raise the question whether the multiple decision systems are served by multiple memory systems, such that one dissociation is grounded in the other. Here we investigated the relationship between model-based RL and relational memory by comparing individual differences across behavioral tasks designed to measure either capacity. Human subjects performed two tasks, a learning and generalization task (acquired equivalence) which involves relational encoding and depends on the hippocampus; and a sequential RL task that could be solved by either a model-based or model-free strategy. We assessed the correlation between subjects' use of flexible, relational memory, as measured by generalization in the acquired equivalence task, and their differential reliance on either RL strategy in the decision task. We observed a significant positive relationship between generalization and model-based, but not model-free, choice strategies. These results are consistent with the hypothesis that model-based RL, like acquired equivalence, relies on a more general-purpose relational memory system.

Keywords

References

  1. Annu Rev Psychol. 1998;49:87-115 [PMID: 9496622]
  2. J Cogn Neurosci. 2003 Feb 15;15(2):185-93 [PMID: 12676056]
  3. J Neurosci. 2000 Jun 1;20(11):4233-9 [PMID: 10818159]
  4. J Exp Psychol Gen. 2014 Feb;143(1):182-94 [PMID: 23230992]
  5. Psychol Rev. 1948 Jul;55(4):189-208 [PMID: 18870876]
  6. Front Hum Neurosci. 2012 Mar 26;6:70 [PMID: 22470333]
  7. PLoS Comput Biol. 2013;9(12):e1003387 [PMID: 24339770]
  8. Neuron. 2010 Jul 15;67(1):25-32 [PMID: 20624589]
  9. Psychol Rev. 1992 Apr;99(2):195-231 [PMID: 1594723]
  10. J Exp Psychol Anim Behav Process. 1989 Oct;15(4):338-46 [PMID: 2794870]
  11. Annu Rev Neurosci. 2007;30:123-52 [PMID: 17417939]
  12. Arch Neurol. 1984 Sep;41(9):965-70 [PMID: 6236779]
  13. J Math Psychol. 1998 Jun;42(2/3):305-26 [PMID: 9710553]
  14. Eur J Neurosci. 2005 Jul;22(2):513-23 [PMID: 16045504]
  15. Behav Neurosci. 1993 Dec;107(6):899-910 [PMID: 8136066]
  16. Eur J Neurosci. 2004 Jan;19(1):181-9 [PMID: 14750976]
  17. Curr Opin Neurobiol. 2012 Dec;22(6):1075-81 [PMID: 22959354]
  18. Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3:15647-54 [PMID: 21389268]
  19. Science. 2009 May 22;324(5930):1080-4 [PMID: 19389999]
  20. Front Hum Neurosci. 2013 Sep 03;7:525 [PMID: 24027514]
  21. Science. 2012 Oct 12;338(6104):270-3 [PMID: 23066083]
  22. Nat Neurosci. 2004 Aug;7(8):887-93 [PMID: 15235607]
  23. Behav Neurosci. 2000 Jun;114(3):468-83 [PMID: 10883798]
  24. J Neurosci. 2002 Dec 15;22(24):10976-84 [PMID: 12486193]
  25. Science. 1996 Sep 6;273(5280):1399-402 [PMID: 8703077]
  26. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1726-31 [PMID: 17229836]
  27. Nature. 2013 May 2;497(7447):74-9 [PMID: 23594744]
  28. Neuron. 2013 Nov 20;80(4):1090-100 [PMID: 24267657]
  29. J Neurosci. 1996 Mar 1;16(5):1936-47 [PMID: 8774460]
  30. Science. 1980 Oct 10;210(4466):207-10 [PMID: 7414331]
  31. J Exp Anal Behav. 2009 Jan;91(1):127-41 [PMID: 19230516]
  32. Neuropsychologia. 2007 Apr 8;45(7):1363-77 [PMID: 17126370]
  33. Hippocampus. 2004;14(2):148-52 [PMID: 15098720]
  34. Neuron. 2012 Aug 9;75(3):418-24 [PMID: 22884326]
  35. J Neurosci. 1989 Feb;9(2):582-7 [PMID: 2521896]
  36. Neural Netw. 2002 Jun-Jul;15(4-6):507-21 [PMID: 12371508]
  37. Psychol Sci. 2013 May;24(5):751-61 [PMID: 23558545]
  38. Neuron. 2002 Aug 15;35(4):625-41 [PMID: 12194864]
  39. Neuron. 2010 Jun 24;66(6):896-907 [PMID: 20620875]
  40. Eur J Neurosci. 2009 Jun;29(11):2225-32 [PMID: 19490086]
  41. J Comp Psychol. 1992 Dec;106(4):342-9 [PMID: 1451416]
  42. Neuron. 2010 May 27;66(4):585-95 [PMID: 20510862]
  43. Neuron. 2009 Jul 30;63(2):267-76 [PMID: 19640484]
  44. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20941-6 [PMID: 24324166]
  45. Neuron. 2008 Oct 23;60(2):378-89 [PMID: 18957228]
  46. J Neurosci. 2012 Oct 24;32(43):15053-65 [PMID: 23100426]
  47. Neuron. 2011 Mar 24;69(6):1204-15 [PMID: 21435563]
  48. Curr Biol. 2012 Sep 11;22(17):1622-7 [PMID: 22885059]
  49. Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11778-83 [PMID: 16868087]
  50. Nat Neurosci. 2005 Dec;8(12):1704-11 [PMID: 16286932]
  51. Nat Neurosci. 2013 Jul;16(7):966-73 [PMID: 23708143]
  52. Eur J Neurosci. 2012 Apr;35(7):1092-104 [PMID: 22487039]
  53. J Cogn Neurosci. 2006 Jul;18(7):1156-73 [PMID: 16839289]
  54. Eur J Neurosci. 2012 Apr;35(7):1011-23 [PMID: 22487032]
  55. J Neurosci. 2011 Apr 6;31(14):5526-39 [PMID: 21471389]
  56. J Cogn Neurosci. 2009 Oct;21(10):1934-45 [PMID: 18823241]
  57. Brain. 2004 Apr;127(Pt 4):851-9 [PMID: 15013954]
  58. Nature. 1996 Jan 18;379(6562):255-7 [PMID: 8538790]
  59. Learn Mem. 1994 Jul-Aug;1(2):106-20 [PMID: 10467589]
  60. J Neurosci. 2007 Nov 7;27(45):12176-89 [PMID: 17989284]

Grants

  1. R01 NS078784/NINDS NIH HHS
  2. R01NS078784-01/NINDS NIH HHS

MeSH Term

Animals
Brain
Corpus Striatum
Decision Making
Hippocampus
Humans
Learning
Memory
Models, Neurological
Models, Psychological
Monte Carlo Method
Reinforcement, Psychology
Reward
Spatial Memory

Word Cloud

Created with Highcharts 10.0.0memorylearningsystemsRLmodel-basedrelationaldecisionmultipletasktasksmodel-freetheoriesparallelshippocampusencodingeithergeneralizationacquiredequivalencemakingstrategiesactionscharacterizedrepresentationspatialmodelbehavioraloftenlikelymechanismsmanydissociationcognitivedeclarativedependssystemgeneral-purposerelationshipstrategyrecentlybecomewidelyappreciatedvalue-basedsupportedcomputationalparticularanimalhumanbehaviorappearsincludehabitualresponsesdescribedprominentreinforcementalsodeliberativegoal-directedcandifferentclasslatterevaluateusingcontingencieslearnedmapmazecalled"internal"GivenevidenceneuraldissociationsapproachesdissociablethoughinteractsharecommonrespectsdivisionlongstandingneurosciencedescribingbroadestlevelseparateproceduralProceduralnotableRL:involvehabitsknowndependpartsstriatumDeclarativecontrastsupportssingleeventsepisodesthoughtsupporttemporalrelationsamongstimulithusreferredplayimportantroleinternalcentralThusinsofarrepresentmightsubserveperformancesortsincludingraisequestionwhetherservedonegroundedinvestigatedcomparingindividualdifferencesacrossdesignedmeasurecapacityHumansubjectsperformedtwoinvolvessequentialsolvedassessedcorrelationsubjects'useflexiblemeasureddifferentialrelianceobservedsignificantpositivechoiceresultsconsistenthypothesislikereliesMultiplesubstratesReinforcementRelational

Similar Articles

Cited By