Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction.

Jian Xin, Ling Ma, Tian-Yi Zhang, Hui Yu, Yue Wang, Liang Kong, Zhe-Yu Chen
Author Information
  1. Jian Xin: Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, and.
  2. Ling Ma: Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, and Department of Clinical Laboratory, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.
  3. Tian-Yi Zhang: Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, and.
  4. Hui Yu: Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, and.
  5. Yue Wang: Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, and.
  6. Liang Kong: Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, and.
  7. Zhe-Yu Chen: Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, and zheyuchen@sdu.edu.cn.

Abstract

Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator.

Keywords

References

  1. J Neurophysiol. 2004 Jul;92(1):1-9 [PMID: 15212433]
  2. Invest Ophthalmol Vis Sci. 2005 Feb;46(2):669-73 [PMID: 15671298]
  3. Nat Neurosci. 2000 Jun;3(6):533-5 [PMID: 10816306]
  4. Learn Mem. 2004 Nov-Dec;11(6):727-31 [PMID: 15537738]
  5. Science. 1997 Aug 22;277(5329):1097-100 [PMID: 9262478]
  6. Neurosci Lett. 1998 Jan 9;240(2):61-4 [PMID: 9486472]
  7. Neuron. 2002 Nov 14;36(4):567-84 [PMID: 12441048]
  8. J Cell Biol. 1995 Jul;130(1):149-56 [PMID: 7540615]
  9. PLoS One. 2012;7(11):e49942 [PMID: 23185492]
  10. Biol Psychiatry. 2006 Feb 1;59(3):244-51 [PMID: 16140276]
  11. Brain Dev. 1996 Sep-Oct;18(5):362-8 [PMID: 8891230]
  12. Behav Neurosci. 1998 Aug;112(4):1012-9 [PMID: 9733207]
  13. Nature. 1989 Sep 14;341(6238):149-52 [PMID: 2779653]
  14. Nat Neurosci. 2008 Nov;11(11):1264-6 [PMID: 18849987]
  15. J Exp Psychol Anim Behav Process. 1994 Jan;20(1):51-65 [PMID: 8308493]
  16. Nat Rev Neurosci. 2004 Nov;5(11):844-52 [PMID: 15496862]
  17. Curr Opin Neurobiol. 2000 Jun;10(3):381-91 [PMID: 10851172]
  18. Neuron. 2007 Jan 18;53(2):261-77 [PMID: 17224407]
  19. J Neurobiol. 2004 Feb 5;58(2):207-16 [PMID: 14704953]
  20. Curr Top Microbiol Immunol. 1991;165:119-70 [PMID: 2032464]
  21. Science. 2010 Jun 4;328(5983):1288-90 [PMID: 20522777]
  22. J Neurosci. 2009 Apr 1;29(13):4056-64 [PMID: 19339601]
  23. J Neurosci. 2003 Jul 9;23(14):6102-10 [PMID: 12853429]
  24. J Neurosci. 1997 Sep 15;17(18):7007-16 [PMID: 9278536]
  25. J Neurosci Methods. 1980 Dec;3(2):129-49 [PMID: 6110810]
  26. Learn Mem. 2006 May-Jun;13(3):254-8 [PMID: 16741279]
  27. Mol Psychiatry. 2007 Jul;12(7):656-70 [PMID: 17264839]
  28. J Neurosci. 2000 Sep 15;20(18):7017-23 [PMID: 10995847]
  29. Eur J Neurosci. 2003 Apr;17(7):1527-30 [PMID: 12713656]
  30. Eur J Neurosci. 2001 Oct;14(8):1219-28 [PMID: 11703451]
  31. J Neurosci. 2004 May 5;24(18):4401-11 [PMID: 15128854]
  32. J Neurosci. 2011 Feb 9;31(6):2079-90 [PMID: 21307245]
  33. Prog Brain Res. 1987;71:185-9 [PMID: 3588941]
  34. Nat Neurosci. 2006 Jul;9(7):870-2 [PMID: 16783370]
  35. Curr Opin Neurobiol. 2010 Apr;20(2):231-5 [PMID: 20303254]
  36. Learn Mem. 2002 Sep-Oct;9(5):224-37 [PMID: 12359832]
  37. Science. 2010 Feb 12;327(5967):863-6 [PMID: 20075215]
  38. J Neurosci Methods. 1998 Dec 1;85(2):129-39 [PMID: 9874149]
  39. Brain Struct Funct. 2007 Sep;212(2):149-79 [PMID: 17717690]
  40. Annu Rev Neurosci. 2001;24:677-736 [PMID: 11520916]
  41. Hippocampus. 2002;12(4):551-60 [PMID: 12201640]
  42. Nat Rev Neurosci. 2003 Apr;4(4):299-309 [PMID: 12671646]
  43. Science. 2002 Feb 22;295(5559):1536-9 [PMID: 11799202]
  44. Cell. 2003 Jan 24;112(2):257-69 [PMID: 12553913]
  45. J Neurosci. 1984 Jul;4(7):1683-9 [PMID: 6737037]
  46. Brain Res. 2005 Jul 27;1051(1-2):176-82 [PMID: 15961067]

MeSH Term

Amygdala
Animals
Antibodies
Avoidance Learning
Brain-Derived Neurotrophic Factor
Carbazoles
Enzyme Inhibitors
Extinction, Psychological
Gene Expression Regulation
Humans
Indole Alkaloids
Male
Prefrontal Cortex
Rats
Rats, Wistar
Receptor, trkB
Signal Transduction
Taste
Time Factors

Chemicals

Antibodies
Brain-Derived Neurotrophic Factor
Carbazoles
Enzyme Inhibitors
Indole Alkaloids
staurosporine aglycone
Receptor, trkB

Word Cloud

Created with Highcharts 10.0.0BDNFextinctionCTABLAILsignalingmemoryrolecircuitconditionedtasteaversionbasolateralamygdalainfralimbicprefrontalcortexneurotrophicfactorreceptorfoundgeneexpressionexogenousmicroinjectionBDNF-neutralizingantibodyviceversainfusionBrain-derivedtropomyosin-relatedkinaseBTrkBplaycriticalHoweverdetailedbasisneuralfullyunderstoodaiminvestigatemediatingratsregion-specificchangesledincreasedcentralamygdaloidnucleusCeAhippocampusHIPMoreoverblockingdisruptenhancesuggestednecessarysufficientInterestinglyabolishtraining-inducedmRNAlevelincreasedemonstratingtransmittedFinallyacceleratedlearningalsoblockedratherindicatingprimaryactionsiteTogetherdatasuggestBLA-ILregulatesidentifyingkeyregulatorInvolvementtransmissionbrain-derived

Similar Articles

Cited By