Lactate storm marks cerebral metabolism following brain trauma.

Sanju Lama, Roland N Auer, Randy Tyson, Clare N Gallagher, Boguslaw Tomanek, Garnette R Sutherland
Author Information
  1. Sanju Lama: From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and.
  2. Roland N Auer: the Hôpital Ste-Justine, Département de Pathologie, Université de Montréal, Montreal, Québec H3T 1C5, Canada.
  3. Randy Tyson: From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and.
  4. Clare N Gallagher: From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and.
  5. Boguslaw Tomanek: From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and.
  6. Garnette R Sutherland: From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and garnette@ucalgary.ca.

Abstract

Brain metabolism is thought to be maintained by neuronal-glial metabolic coupling. Glia take up glutamate from the synaptic cleft for conversion into glutamine, triggering glial glycolysis and lactate production. This lactate is shuttled into neurons and further metabolized. The origin and role of lactate in severe traumatic brain injury (TBI) remains controversial. Using a modified weight drop model of severe TBI and magnetic resonance (MR) spectroscopy with infusion of (13)C-labeled glucose, lactate, and acetate, the present study investigated the possibility that neuronal-glial metabolism is uncoupled following severe TBI. Histopathology of the model showed severe brain injury with subarachnoid and hemorrhage together with glial cell activation and positive staining for Tau at 90 min post-trauma. High resolution MR spectroscopy of brain metabolites revealed significant labeling of lactate at C-3 and C-2 irrespective of the infused substrates. Increased (13)C-labeled lactate in all study groups in the absence of ischemia implied activated astrocytic glycolysis and production of lactate with failure of neuronal uptake (i.e. a loss of glial sensing for glutamate). The early increase in extracellular lactate in severe TBI with the injured neurons rendered unable to pick it up probably contributes to a rapid progression toward irreversible injury and pan-necrosis. Hence, a method to detect and scavenge the excess extracellular lactate on site or early following severe TBI may be a potential primary therapeutic measure.

Keywords

References

  1. Brain Res. 1992 Mar 27;576(1):120-4 [PMID: 1515906]
  2. J Neurotrauma. 2007 Jul;24(7):1079-92 [PMID: 17610349]
  3. Pediatr Radiol. 2005 Jul;35(7):668-76 [PMID: 15830194]
  4. Neuron. 2012 Sep 20;75(6):1094-104 [PMID: 22998876]
  5. Brain. 2009 Oct;132(Pt 10):2839-49 [PMID: 19700417]
  6. Acta Neurochir Suppl. 2000;76:439-44 [PMID: 11450063]
  7. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10526-31 [PMID: 10984541]
  8. Intensive Care Med. 2009 Mar;35(3):471-9 [PMID: 18807008]
  9. Transl Stroke Res. 2011 Dec;2(4):492-516 [PMID: 22299022]
  10. Brain. 2011 Feb;134(Pt 2):484-94 [PMID: 21247930]
  11. Neuroreport. 1995 Nov 13;6(16):2201-4 [PMID: 8595202]
  12. Neurology. 2008 Mar 4;70(10):771-8 [PMID: 18316688]
  13. Antioxid Redox Signal. 2013 Sep 10;19(8):836-53 [PMID: 23547621]
  14. J Neurosci. 1996 Feb 1;16(3):877-85 [PMID: 8558256]
  15. Respir Physiol Neurobiol. 2006 Jan 25;150(1):4-18 [PMID: 15890562]
  16. J Cereb Blood Flow Metab. 1997 Nov;17(11):1230-8 [PMID: 9390655]
  17. Brain Res. 2000 Apr 10;861(2):281-7 [PMID: 10760489]
  18. J Neurosurg. 1999 Feb;90(2):339-47 [PMID: 9950506]
  19. J Cereb Blood Flow Metab. 2002 Mar;22(3):271-9 [PMID: 11891432]
  20. Nat Rev Neurol. 2013 Apr;9(4):192-200 [PMID: 23558985]
  21. J Neurotrauma. 1998 Jul;15(7):509-19 [PMID: 9674554]
  22. Acta Neurochir (Wien). 2007;149(9):919-27; discussion 927 [PMID: 17660938]
  23. Neurosci Lett. 1998 May 15;247(2-3):123-6 [PMID: 9655608]
  24. J Neurotrauma. 2007 Jan;24(1):181-94 [PMID: 17263682]
  25. Science. 1999 Jan 22;283(5401):496-7 [PMID: 9988650]
  26. J Neurotrauma. 2012 Aug 10;29(12):2181-91 [PMID: 22888957]
  27. Oxid Med Cell Longev. 2013;2013:940603 [PMID: 23936615]
  28. Brain Res. 2003 Nov 28;992(1):43-52 [PMID: 14604771]
  29. J Cereb Blood Flow Metab. 2012 Jul;32(7):1107-38 [PMID: 22186669]
  30. J Cereb Blood Flow Metab. 2005 Jun;25(6):763-74 [PMID: 15716852]
  31. J Neurosurg. 1994 Feb;80(2):301-13 [PMID: 8283270]
  32. Nat Rev Neurosci. 2006 Jan;7(1):41-53 [PMID: 16371949]
  33. Nat Rev Neurol. 2010 Jul;6(7):393-403 [PMID: 20551947]
  34. Neurochem Res. 1995 Dec;20(12):1491-501 [PMID: 8789613]
  35. J Neurotrauma. 2007 May;24(5):772-89 [PMID: 17518533]
  36. Neurochem Int. 2002 Aug-Sep;41(2-3):143-54 [PMID: 12020614]
  37. Neuroreport. 2000 Jun 26;11(9):1845-8 [PMID: 10884030]
  38. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9 [PMID: 7938003]
  39. J Neurochem. 1973 Nov;21(5):1127-38 [PMID: 4761701]
  40. Dev Neurosci. 1998;20(4-5):291-9 [PMID: 9778565]
  41. Brain Res. 1992 Jul 10;585(1-2):184-9 [PMID: 1511300]
  42. Acta Neurochir Suppl. 2013;118:223-7 [PMID: 23564137]
  43. J Cereb Blood Flow Metab. 2010 Jan;30(1):15-35 [PMID: 19756021]
  44. Am J Clin Nutr. 2009 Sep;90(3):875S-880S [PMID: 19571222]
  45. PLoS One. 2007 Jun 20;2(6):e536 [PMID: 17579710]
  46. Curr Med Chem. 2014 Apr;21(10):1201-11 [PMID: 24350853]
  47. Magn Reson Med. 1992 Mar;24(1):123-36 [PMID: 1556919]
  48. J Neurosurg. 1994 Feb;80(2):291-300 [PMID: 8283269]
  49. Biochemistry. 1994 Jul 26;33(29):8694-701 [PMID: 8038159]
  50. Acta Neurochir Suppl. 2000;76:359-64 [PMID: 11450045]
  51. J Neurosurg. 2005 Oct;103(4):597-607 [PMID: 16266040]
  52. J Drug Target. 1998;6(2):151-65 [PMID: 9886238]
  53. Brain Res. 1992 Jul 10;585(1-2):190-5 [PMID: 1511302]
  54. Biochemistry. 1991 Jul 2;30(26):6362-6 [PMID: 2054342]
  55. Brain Res. 2002 Feb 22;928(1-2):156-9 [PMID: 11844482]
  56. J Cereb Blood Flow Metab. 1987 Aug;7(4):379-86 [PMID: 3611202]
  57. J Cereb Blood Flow Metab. 2013 Nov;33(11):1815-22 [PMID: 23963367]
  58. Neurosurgery. 1997 Nov;41(5):1082-91; discussion 1091-3 [PMID: 9361062]

Grants

  1. RT733596/Canadian Institutes of Health Research

MeSH Term

Acetic Acid
Animals
Astrocytes
Brain
Brain Injuries
Glial Fibrillary Acidic Protein
Glucose
Glycolysis
Lactic Acid
Magnetic Resonance Spectroscopy
Male
Neurons
Rats
Rats, Sprague-Dawley

Chemicals

Glial Fibrillary Acidic Protein
Lactic Acid
Glucose
Acetic Acid

Word Cloud

Created with Highcharts 10.0.0lactatesevereTBIbrainBrainmetabolismglialinjuryMRfollowingTauCycleneuronal-glialglutamateglycolysisproductionneuronsmodelspectroscopy13C-labeledstudyearlyextracellularLactateMetabolismthoughtmaintainedmetaboliccouplingGliatakesynapticcleftconversionglutaminetriggeringshuttledmetabolizedoriginroletraumaticremainscontroversialUsingmodifiedweightdropmagneticresonanceinfusionglucoseacetatepresentinvestigatedpossibilityuncoupledHistopathologyshowedsubarachnoidhemorrhagetogethercellactivationpositivestaining90minpost-traumaHighresolutionmetabolitesrevealedsignificantlabelingC-3C-2irrespectiveinfusedsubstratesIncreasedgroupsabsenceischemiaimpliedactivatedastrocyticfailureneuronaluptakeielosssensingincreaseinjuredrenderedunablepickprobablycontributesrapidprogressiontowardirreversiblepan-necrosisHencemethoddetectscavengeexcesssitemaypotentialprimarytherapeuticmeasurestormmarkscerebraltrauma13C-LabeledSubstratesGlialCellSpectroscopyNeuronNeuronal-GlialProteinTraumaticInjuryTricarboxylicAcidTCAKrebs

Similar Articles

Cited By