Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice.

Yufeng Wu, Wenli Zhang, Jiming Jiang
Author Information
  1. Yufeng Wu: Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  2. Wenli Zhang: Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  3. Jiming Jiang: Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Abstract

Nucleosome positioning dictates the DNA accessibility for regulatory proteins, and thus is critical for gene expression and regulation. It has been well documented that only a subset of nucleosomes are reproducibly positioned in eukaryotic genomes. The most prominent example of phased nucleosomes is the context of genes, where phased nucleosomes flank the transcriptional starts sites (TSSs). It is unclear, however, what factors determine nucleosome positioning in regions that are not close to genes. We mapped both nucleosome positioning and DNase I hypersensitive site (DHS) datasets across the rice genome. We discovered that DHSs located in a variety of contexts, both genic and intergenic, were flanked by strongly phased nucleosome arrays. Phased nucleosomes were also found to flank DHSs in the human genome. Our results suggest the barrier model may represent a general feature of nucleosome organization in eukaryote genomes. Specifically, regions bound with regulatory proteins, including intergenic regions, can serve as barriers that organize phased nucleosome arrays on both sides. Our results also suggest that rice DHSs often span a single, phased nucleosome, similar to the H2A.Z-containing nucleosomes observed in DHSs in the human genome.

Associated Data

GEO | GSE53027

References

  1. Plant Cell. 2012 Jul;24(7):2719-31 [PMID: 22773751]
  2. Bioinformatics. 2008 Nov 1;24(21):2537-8 [PMID: 18784119]
  3. Nat Genet. 2009 Aug;41(8):941-5 [PMID: 19633671]
  4. Genome Res. 2008 Jul;18(7):1051-63 [PMID: 18477713]
  5. Bioinformatics. 2011 Aug 1;27(15):2149-50 [PMID: 21653521]
  6. Nat Genet. 2007 Oct;39(10):1235-44 [PMID: 17873876]
  7. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94 [PMID: 20395551]
  8. Genome Res. 2009 Mar;19(3):460-9 [PMID: 19088306]
  9. Cell. 2007 May 18;129(4):823-37 [PMID: 17512414]
  10. Nat Struct Mol Biol. 2009 Aug;16(8):847-52 [PMID: 19620965]
  11. Science. 2010 May 14;328(5980):916-9 [PMID: 20395474]
  12. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  13. Mol Cell. 2012 Oct 12;48(1):5-15 [PMID: 22885008]
  14. Genome Res. 2012 Jan;22(1):151-62 [PMID: 22110044]
  15. Plant J. 2010 Aug;63(3):353-65 [PMID: 20487381]
  16. Plant Cell. 2008 Feb;20(2):259-76 [PMID: 18263775]
  17. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  18. Plant Cell. 2010 Jan;22(1):17-33 [PMID: 20086188]
  19. Science. 2005 Jul 22;309(5734):626-30 [PMID: 15961632]
  20. Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10165-70 [PMID: 23723349]
  21. Nature. 2012 Sep 6;489(7414):75-82 [PMID: 22955617]
  22. Genome Res. 2010 Jan;20(1):90-100 [PMID: 19846608]
  23. Nature. 2009 May 7;459(7243):108-12 [PMID: 19295514]
  24. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  25. Nat Rev Genet. 2011 Jul 12;12(8):554-64 [PMID: 21747402]
  26. Genome Res. 2008 Nov;18(11):1851-8 [PMID: 18714091]
  27. Cell. 2012 Jun 22;149(7):1461-73 [PMID: 22726434]
  28. Genome Res. 2014 Feb;24(2):260-6 [PMID: 24285721]
  29. Science. 2011 May 20;332(6032):977-80 [PMID: 21596991]
  30. Plant Cell. 2013 Oct;25(10):3743-59 [PMID: 24170127]
  31. PLoS Biol. 2008 Mar 18;6(3):e65 [PMID: 18351804]
  32. Nature. 2010 Jul 15;466(7304):388-92 [PMID: 20512117]
  33. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  34. PLoS Genet. 2008 Jul 25;4(7):e1000138 [PMID: 18654629]
  35. Plant J. 2010 Mar;61(5):752-66 [PMID: 20003165]
  36. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  37. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  38. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  39. Nat Genet. 2010 Jun;42(6):541-4 [PMID: 20495565]
  40. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20998-1003 [PMID: 21084631]
  41. Nucleic Acids Res. 1988 Jul 25;16(14A):6677-90 [PMID: 3399412]
  42. Nature. 2012 Jun 28;486(7404):496-501 [PMID: 22722846]
  43. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  44. Genome Biol. 2011;12(4):R34 [PMID: 21473766]
  45. Science. 2011 Sep 23;333(6050):1758-60 [PMID: 21940898]
  46. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]
  47. Nature. 2005 Aug 11;436(7052):793-800 [PMID: 16100779]
  48. Science. 2009 Jan 16;323(5912):401-4 [PMID: 19074313]
  49. Cell. 2008 Jan 25;132(2):311-22 [PMID: 18243105]

MeSH Term

Binding Sites
Deoxyribonuclease I
Genome, Plant
Nucleosomes
Oryza
Promoter Regions, Genetic
Transcription, Genetic

Chemicals

Nucleosomes
Deoxyribonuclease I

Word Cloud

Created with Highcharts 10.0.0nucleosomenucleosomesphasedpositioningregionsDHSsricegenomeregulatoryproteinsgenomesgenesflankDNaseintergenicarraysalsohumanresultssuggestNucleosomedictatesDNAaccessibilitythuscriticalgeneexpressionregulationwelldocumentedsubsetreproduciblypositionedeukaryoticprominentexamplecontexttranscriptionalstartssitesTSSsunclearhoweverfactorsdetermineclosemappedhypersensitivesiteDHSdatasetsacrossdiscoveredlocatedvarietycontextsgenicflankedstronglyPhasedfoundbarriermodelmayrepresentgeneralfeatureorganizationeukaryoteSpecificallyboundincludingcanservebarriersorganizesidesoftenspansinglesimilarH2AZ-containingobservedGenome-wideorchestratedgenomicassociatedhypersensitivity

Similar Articles

Cited By