Design of synthetic yeast promoters via tuning of nucleosome architecture.

Kathleen A Curran, Nathan C Crook, Ashty S Karim, Akash Gupta, Allison M Wagman, Hal S Alper
Author Information
  1. Kathleen A Curran: Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712.
  2. Nathan C Crook: Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712.
  3. Ashty S Karim: Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712.
  4. Akash Gupta: Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712.
  5. Allison M Wagman: Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712.
  6. Hal S Alper: Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712.

Abstract

Model-based design of biological parts is a critical goal of synthetic biology, especially for eukaryotes. Here we demonstrate that nucleosome architecture can have a role in defining yeast promoter activity and utilize a computationally-guided approach that can enable both the redesign of endogenous promoter sequences and the de novo design of synthetic promoters. Initially, we use our approach to reprogram native promoters for increased expression and evaluate their performance in various genetic contexts. Increases in expression ranging from 1.5- to nearly 6-fold in a plasmid-based system and up to 16-fold in a genomic context were obtained. Next, we demonstrate that, in a single design cycle, it is possible to create functional, purely synthetic yeast promoters that achieve substantial expression levels (within the top sixth percentile among native yeast promoters). In doing so, this work establishes a unique DNA-level specification of promoter activity and demonstrates predictive design of synthetic parts.

References

  1. Biotechnol J. 2013 Jan;8(1):46-58 [PMID: 22890821]
  2. Yeast. 2009 Oct;26(10):545-51 [PMID: 19681174]
  3. Appl Environ Microbiol. 2011 Nov;77(22):7905-14 [PMID: 21926196]
  4. Yeast. 2003 Nov;20(15):1263-72 [PMID: 14618564]
  5. Nucleic Acids Res. 2011 Jan;39(Database issue):D647-52 [PMID: 21045055]
  6. BMC Evol Biol. 2011 May 31;11:150 [PMID: 21627806]
  7. Nucleic Acids Res. 2012 Oct;40(18):e142 [PMID: 22718979]
  8. Nucleic Acids Res. 2013 Feb 1;41(4):e57 [PMID: 23275543]
  9. Nat Biotechnol. 2012 May 20;30(6):521-30 [PMID: 22609971]
  10. PLoS Biol. 2008 Mar 18;6(3):e65 [PMID: 18351804]
  11. Nat Biotechnol. 2009 Oct;27(10):946-50 [PMID: 19801975]
  12. Nat Methods. 2006 Aug;3(8):623-8 [PMID: 16862137]
  13. Methods Mol Biol. 2011;765:189-206 [PMID: 21815094]
  14. Nucleic Acids Res. 2011 Jan;39(Database issue):D136-40 [PMID: 20972212]
  15. BMC Bioinformatics. 2010 Jun 24;11:346 [PMID: 20576140]
  16. Biotechnol Bioeng. 2012 Nov;109(11):2884-95 [PMID: 22565375]
  17. Appl Environ Microbiol. 2006 Aug;72(8):5266-73 [PMID: 16885275]
  18. Gene. 1995 Apr 14;156(1):119-22 [PMID: 7737504]
  19. Nature. 2008 May 8;453(7192):246-50 [PMID: 18418379]
  20. Nucleic Acids Res. 2011 Aug;39(14):e92 [PMID: 21586584]
  21. PLoS One. 2012;7(3):e33279 [PMID: 22442681]
  22. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12678-83 [PMID: 16123130]
  23. Cell. 2011 Jul 8;146(1):105-18 [PMID: 21729783]
  24. Cell. 1998 Nov 25;95(5):717-28 [PMID: 9845373]
  25. Cell. 2012 Aug 3;150(3):647-58 [PMID: 22863014]

Grants

  1. R01 GM090221/NIGMS NIH HHS
  2. R01GM090221/NIGMS NIH HHS

MeSH Term

Gene Expression Regulation, Fungal
Models, Genetic
Mutation
Nucleosomes
Promoter Regions, Genetic
Saccharomyces cerevisiae

Chemicals

Nucleosomes

Word Cloud

Created with Highcharts 10.0.0syntheticpromotersdesignyeastpromoterexpressionpartsdemonstratenucleosomearchitecturecanactivityapproachnativeModel-basedbiologicalcriticalgoalbiologyespeciallyeukaryotesroledefiningutilizecomputationally-guidedenableredesignendogenoussequencesdenovoInitiallyusereprogramincreasedevaluateperformancevariousgeneticcontextsIncreasesranging15-nearly6-foldplasmid-basedsystem16-foldgenomiccontextobtainedNextsinglecyclepossiblecreatefunctionalpurelyachievesubstantiallevelswithintopsixthpercentileamongworkestablishesuniqueDNA-levelspecificationdemonstratespredictiveDesignviatuning

Similar Articles

Cited By