Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate.

Regina S Salvat, Andrew S Parker, Andrew Guilliams, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E Griswold
Author Information
  1. Regina S Salvat: Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH, 03755, USA.

Abstract

Biotherapeutics are subject to immune surveillance within the body, and anti-biotherapeutic immune responses can compromise drug efficacy and patient safety. Initial development of targeted antidrug immune memory is coordinated by T cell recognition of immunogenic subsequences, termed "T cell epitopes." Biotherapeutics may therefore be deimmunized by mutating key residues within cognate epitopes, but there exist complex trade-offs between immunogenicity, mutational load, and protein structure-function. Here, a protein deimmunization algorithm has been applied to P99 beta-lactamase, a component of antibody-directed enzyme prodrug therapies. The algorithm, integer programming for immunogenic proteins, seamlessly integrates computational prediction of T cell epitopes with both 1- and 2-body sequence potentials that assess protein tolerance to epitope-deleting mutations. Compared to previously deimmunized P99 variants, which bore only one or two mutations, the enzymes designed here contain 4-5 widely distributed substitutions. As a result, they exhibit broad reductions in major histocompatibility complex recognition. Despite their high mutational loads and markedly reduced immunoreactivity, all eight engineered variants possessed wild-type or better catalytic activity. Thus, the protein design algorithm is able to disrupt broadly distributed epitopes while maintaining protein function. As a result, this computational tool may prove useful in expanding the repertoire of next-generation biotherapeutics.

References

  1. Dev Biol (Basel). 2005;122:171-94 [PMID: 16375261]
  2. Bioinformatics. 2001 Dec;17(12):1236-7 [PMID: 11751237]
  3. Clin Immunol. 2007 Jul;124(1):26-32 [PMID: 17490912]
  4. Appl Bioinformatics. 2003;2(1):63-6 [PMID: 15130834]
  5. Immunol Res. 2009 Dec;45(2-3):123-43 [PMID: 19198764]
  6. J Immunol. 2005 Mar 15;174(6):3187-96 [PMID: 15749848]
  7. BMC Bioinformatics. 2007 Jul 04;8:238 [PMID: 17608956]
  8. J Bioinform Comput Biol. 2011 Apr;9(2):207-29 [PMID: 21523929]
  9. Drugs R D. 2008;9(6):385-96 [PMID: 18989990]
  10. J Neurosci. 2005 Jul 13;25(28):6576-83 [PMID: 16014718]
  11. J Biomed Biotechnol. 2010;2010:325720 [PMID: 20617148]
  12. PLoS Comput Biol. 2008 Apr 04;4(4):e1000048 [PMID: 18389056]
  13. Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):E3597-603 [PMID: 23213206]
  14. Trends Immunol. 2007 Nov;28(11):482-90 [PMID: 17964218]
  15. BMC Bioinformatics. 2010 Apr 09;11:180 [PMID: 20380721]
  16. Immunogenetics. 2005 Jun;57(5):304-14 [PMID: 15868141]
  17. Clin Immunol. 2009 May;131(2):189-201 [PMID: 19269256]
  18. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1272-7 [PMID: 21209329]
  19. Immunome Res. 2010 Nov 13;6:9 [PMID: 21073747]
  20. Clin Immunol. 2012 Mar;142(3):320-31 [PMID: 22222093]
  21. BMC Bioinformatics. 2006 Oct 23;7:463 [PMID: 17059589]
  22. Proteins. 1988;4(2):99-122 [PMID: 3227018]
  23. J Immunol. 2004 Jun 1;172(11):6658-65 [PMID: 15153481]
  24. Gene. 1995 Oct 16;164(1):49-53 [PMID: 7590320]
  25. Curr Drug Targets. 2009 Feb;10(2):131-9 [PMID: 19199909]
  26. Cell Mol Life Sci. 2014 Feb;71(4):673-82 [PMID: 23995987]
  27. J Comput Biol. 2013 Feb;20(2):152-65 [PMID: 23384000]
  28. Drug Discov Today. 2011 Apr;16(7-8):345-53 [PMID: 21300174]
  29. Annu Rev Immunol. 2005;23:975-1028 [PMID: 15771591]
  30. Trends Immunol. 2005 Sep;26(9):477-84 [PMID: 16039158]
  31. Protein Eng Des Sel. 2012 Oct;25(10):613-23 [PMID: 22898588]
  32. Self Nonself. 2010 Oct;1(4):314-322 [PMID: 21487506]
  33. Biomed Microdevices. 2010 Apr;12(2):283-6 [PMID: 20012559]
  34. J Vis Exp. 2014 Mar 25;(85): [PMID: 24686319]
  35. J Comput Chem. 2013 Apr 5;34(10):879-91 [PMID: 23299435]
  36. Mol Cancer Ther. 2005 Nov;4(11):1791-800 [PMID: 16276001]
  37. Arthritis Res Ther. 2003;5(1):R40-8 [PMID: 12716452]
  38. J Immunother. 2009 Jul-Aug;32(6):574-84 [PMID: 19483652]
  39. J Immunol. 1998 Apr 1;160(7):3363-73 [PMID: 9531296]
  40. Thromb Haemost. 2002 Apr;87(4):666-73 [PMID: 12008950]
  41. Nephrol Dial Transplant. 2005 Jun;20 Suppl 6:vi3-9 [PMID: 15958824]

Grants

  1. R01 GM098977/NIGMS NIH HHS
  2. R01-GM-098977/NIGMS NIH HHS

MeSH Term

Algorithms
Computational Biology
Drug Stability
Drug Therapy
Epitope Mapping
Epitopes, T-Lymphocyte
Humans
Prodrugs
Protein Engineering
Sequence Deletion
Temperature
beta-Lactamases

Chemicals

Epitopes, T-Lymphocyte
Prodrugs
beta-Lactamases

Word Cloud

Created with Highcharts 10.0.0epitopesproteincellimmuneTalgorithmdistributedBiotherapeuticswithinrecognitionimmunogenicmaydeimmunizedcomplexmutationalP99computationalmutationsvariantsresultbroadlysubjectsurveillancebodyanti-biotherapeuticresponsescancompromisedrugefficacypatientsafetyInitialdevelopmenttargetedantidrugmemorycoordinatedsubsequencestermed"T"thereforemutatingkeyresiduescognateexisttrade-offsimmunogenicityloadstructure-functiondeimmunizationappliedbeta-lactamasecomponentantibody-directedenzymeprodrugtherapiesintegerprogrammingproteinsseamlesslyintegratesprediction1-2-bodysequencepotentialsassesstoleranceepitope-deletingComparedpreviouslyboreonetwoenzymesdesignedcontain4-5widelysubstitutionsexhibitbroadreductionsmajorhistocompatibilityDespitehighloadsmarkedlyreducedimmunoreactivityeightengineeredpossessedwild-typebettercatalyticactivityThusdesignabledisruptmaintainingfunctiontoolproveusefulexpandingrepertoirenext-generationbiotherapeuticsComputationallydrivendeletionbiotherapeuticcandidate

Similar Articles

Cited By (15)