Controlled ocular drug delivery with nanomicelles.

Ravi D Vaishya, Varun Khurana, Sulabh Patel, Ashim K Mitra
Author Information
  1. Ravi D Vaishya: Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108-2718, U.S.A.

Abstract

Many vision threatening ocular diseases such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma, and proliferative vitreoretinopathy may result in blindness. Ocular drug delivery specifically to the intraocular tissues remains a challenging task due to the presence of various physiological barriers. Nonetheless, recent advancements in the field of nanomicelle-based novel drug delivery system could fulfil these unmet needs. Nanomicelles consists of amphiphilic molecules that self-assemble in aqueous media to form organized supramolecular structures. Micelles can be prepared in various sizes (10-1000 nm) and shapes depending on the molecular weights of the core and corona forming blocks. Nanomicelles have been an attractive carrier for their potential to solubilize hydrophobic molecules in aqueous solution. In addition, small size in nanometer range and highly modifiable surface properties have been reported to be advantageous in ocular drug delivery. In this review, various factors influencing rationale design of nanomicelles formulation and disposition are discussed along with case studies. Despite the progress in the field, influence of various properties of nanomicelles such as size, shape, surface charge, rigidity of structure on ocular disposition need to be studied in further details to develop an efficient nanocarrier system.

References

  1. Cornea. 2014 Jan;33(1):77-81 [PMID: 24162754]
  2. J Control Release. 2012 May 30;160(1):96-104 [PMID: 22306336]
  3. Biomaterials. 2003 Nov;24(24):4495-506 [PMID: 12922159]
  4. J Phys Chem B. 2005 Mar 31;109(12):5592-9 [PMID: 16851602]
  5. Exp Eye Res. 1998 Jun;66(6):747-54 [PMID: 9657907]
  6. Bioconjug Chem. 1995 Nov-Dec;6(6):639-43 [PMID: 8608176]
  7. AAPS PharmSciTech. 2014 Oct;15(5):1238-51 [PMID: 24895075]
  8. J R Soc Interface. 2012 Sep 7;9(74):2059-69 [PMID: 22491977]
  9. Arch Pharm Res. 2003 Feb;26(2):173-81 [PMID: 12643597]
  10. Eur J Pharm Biopharm. 2012 Jun;81(2):257-64 [PMID: 22445900]
  11. Int J Pharm. 2013 Oct 15;455(1-2):331-7 [PMID: 23867983]
  12. J Pharm Sci. 2003 Jul;92(7):1343-55 [PMID: 12820139]
  13. Invest Ophthalmol Vis Sci. 2008 Mar;49(3):894-9 [PMID: 18326709]
  14. Int J Pharm. 2004 Mar 19;272(1-2):57-64 [PMID: 15019069]
  15. J Pharm Sci. 2010 Oct;99(10):4317-25 [PMID: 20310026]
  16. Invest Ophthalmol Vis Sci. 1992 Mar;33(3):581-95 [PMID: 1544784]
  17. J Pharm Pharmacol. 2005 Dec;57(12):1555-63 [PMID: 16354399]
  18. Ophthalmology. 2000 Sep;107(9):1754-60 [PMID: 10964840]
  19. J Med Chem. 1993 Nov 26;36(24):3757-64 [PMID: 8254605]
  20. Expert Opin Drug Deliv. 2006 Jan;3(1):139-62 [PMID: 16370946]
  21. Drug Dev Ind Pharm. 2007 Oct;33(10):1142-50 [PMID: 17852364]
  22. J Control Release. 2003 Dec 5;93(2):141-50 [PMID: 14636720]
  23. Int J Pharm. 2011 Sep 20;416(2):515-24 [PMID: 21219997]
  24. J Ocul Pharmacol Ther. 2014 Feb;30(1):49-58 [PMID: 24192229]
  25. Int J Pharm. 2000 Nov 19;209(1-2):1-14 [PMID: 11084241]
  26. Curr Eye Res. 2010 Dec;35(12):1081-9 [PMID: 20961207]
  27. Invest Ophthalmol Vis Sci. 2012 Apr 30;53(4):2292-9 [PMID: 22427552]
  28. Biomacromolecules. 2006 Dec;7(12):3452-9 [PMID: 17154474]
  29. Nanotechnology. 2010 May 28;21(21):215103 [PMID: 20431208]
  30. Colloids Surf B Biointerfaces. 2013 Dec 1;112:30-4 [PMID: 23939422]
  31. Int J Pharm. 2009 Aug 13;378(1-2):177-86 [PMID: 19465101]
  32. Doc Ophthalmol. 1997;93(1-2):149-57 [PMID: 9476613]
  33. FEBS Lett. 2004 Jan 16;557(1-3):21-5 [PMID: 14741335]
  34. J Ophthalmol. 2012;2012:783163 [PMID: 22523652]
  35. J Biomed Mater Res B Appl Biomater. 2013 Jul;101(5):689-99 [PMID: 23359519]
  36. Gene Ther. 2001 Jul;8(13):999-1004 [PMID: 11438834]
  37. Acta Biomater. 2012 Nov;8(11):3932-40 [PMID: 22824530]
  38. Colloids Surf B Biointerfaces. 2013 Mar 1;103:550-7 [PMID: 23261579]
  39. Pharm Res. 2002 Jan;19(1):108-11 [PMID: 11837694]
  40. Eur J Pharm Biopharm. 2005 Jul;60(2):207-25 [PMID: 15939234]
  41. Eur J Pharm Sci. 2010 Apr 16;40(1):38-47 [PMID: 20184955]
  42. Invest Ophthalmol. 1966 Jun;5(3):264-76 [PMID: 5947945]
  43. Curr Eye Res. 2003 Mar-Apr;26(3-4):151-63 [PMID: 12815543]
  44. Clin Immunol Immunopathol. 1996 Sep;80(3 Pt 2):S40-5 [PMID: 8811062]
  45. Bioconjug Chem. 1997 Sep-Oct;8(5):702-7 [PMID: 9327134]
  46. J Comp Neurol. 1994 Feb 22;340(4):566-76 [PMID: 8006217]
  47. Adv Drug Deliv Rev. 2001 Mar 23;47(1):113-31 [PMID: 11251249]

Grants

  1. R01 EY009171/NEI NIH HHS
  2. R01 EY010659/NEI NIH HHS

MeSH Term

Animals
Drug Carriers
Humans
Hydrophobic and Hydrophilic Interactions
Micelles
Nanostructures
Ophthalmic Solutions
Rabbits

Chemicals

Drug Carriers
Micelles
Ophthalmic Solutions

Word Cloud

Created with Highcharts 10.0.0oculardrugdeliveryvariousnanomicellesfieldsystemNanomicellesmoleculesaqueoussizesurfacepropertiesdispositionManyvisionthreateningdiseasesage-relatedmaculardegenerationAMDdiabeticretinopathyglaucomaproliferativevitreoretinopathymayresultblindnessOcularspecificallyintraoculartissuesremainschallengingtaskduepresencephysiologicalbarriersNonethelessrecentadvancementsnanomicelle-basednovelfulfilunmetneedsconsistsamphiphilicself-assemblemediaformorganizedsupramolecularstructuresMicellescanpreparedsizes10-1000 nmshapesdependingmolecularweightscorecoronaformingblocksattractivecarrierpotentialsolubilizehydrophobicsolutionadditionsmallnanometerrangehighlymodifiablereportedadvantageousreviewfactorsinfluencingrationaledesignformulationdiscussedalongcasestudiesDespiteprogressinfluenceshapechargerigiditystructureneedstudieddetailsdevelopefficientnanocarrierControlled

Similar Articles

Cited By