A virtual reality task based on animal research - spatial learning and memory in patients after the first episode of schizophrenia.

Iveta Fajnerová, Mabel Rodriguez, David Levčík, Lucie Konrádová, Pavol Mikoláš, Cyril Brom, Aleš Stuchlík, Kamil Vlček, Jiří Horáček
Author Information
  1. Iveta Fajnerová: Prague Psychiatric Center Prague, Czech Republic ; Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i. Prague, Czech Republic ; Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University in Prague Prague, Czech Republic.
  2. Mabel Rodriguez: Prague Psychiatric Center Prague, Czech Republic.
  3. David Levčík: Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i. Prague, Czech Republic.
  4. Lucie Konrádová: Prague Psychiatric Center Prague, Czech Republic.
  5. Pavol Mikoláš: Prague Psychiatric Center Prague, Czech Republic ; Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University in Prague Prague, Czech Republic.
  6. Cyril Brom: Department of Software and Computer Science Education, Faculty of Mathematics and Physics, Charles University in Prague Prague, Czech Republic.
  7. Aleš Stuchlík: Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i. Prague, Czech Republic.
  8. Kamil Vlček: Department of Neurophysiology of Memory, Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i. Prague, Czech Republic.
  9. Jiří Horáček: Prague Psychiatric Center Prague, Czech Republic ; Department of Psychiatry and Medical Psychology, 3rd Faculty of Medicine, Charles University in Prague Prague, Czech Republic.

Abstract

OBJECTIVES: Cognitive deficit is considered to be a characteristic feature of schizophrenia disorder. A similar cognitive dysfunction was demonstrated in animal models of schizophrenia. However, the poor comparability of methods used to assess cognition in animals and humans could be responsible for low predictive validity of current animal models. In order to assess spatial abilities in schizophrenia and compare our results with the data obtained in animal models, we designed a virtual analog of the Morris water maze (MWM), the virtual Four Goals Navigation (vFGN) task.
METHODS: Twenty-nine patients after the first psychotic episode with schizophrenia symptoms and a matched group of healthy volunteers performed the vFGN task. They were required to find and remember four hidden goal positions in an enclosed virtual arena. The task consisted of two parts. The Reference memory (RM) session with a stable goal position was designed to test spatial learning. The Delayed-matching-to-place (DMP) session presented a modified working memory protocol designed to test the ability to remember a sequence of three hidden goal positions.
RESULTS: Data obtained in the RM session show impaired spatial learning in schizophrenia patients compared to the healthy controls in pointing and navigation accuracy. The DMP session showed impaired spatial memory in schizophrenia during the recall of spatial sequence and a similar deficit in spatial bias in the probe trials. The pointing accuracy and the quadrant preference showed higher sensitivity toward the cognitive deficit than the navigation accuracy. Direct navigation to the goal was affected by sex and age of the tested subjects. The age affected spatial performance only in healthy controls.
CONCLUSIONS: Despite some limitations of the study, our results correspond well with the previous studies in animal models of schizophrenia and support the decline of spatial cognition in schizophrenia, indicating the usefulness of the vFGN task in comparative research.

Keywords

References

  1. Crit Rev Neurobiol. 2000;14(1):1-21 [PMID: 11253953]
  2. Eur J Neurosci. 1990;2(12):1016-1028 [PMID: 12106063]
  3. Behav Brain Res. 2013 Jun 1;246:55-62 [PMID: 23499708]
  4. Br J Psychol. 2003 Aug;94(Pt 3):299-317 [PMID: 14511545]
  5. Prog Neuropsychopharmacol Biol Psychiatry. 2003 Aug;27(5):787-94 [PMID: 12921911]
  6. Neurobiol Learn Mem. 2009 Jul;92(1):89-98 [PMID: 19248837]
  7. Behav Brain Res. 2008 Nov 21;193(2):209-15 [PMID: 18602173]
  8. Arch Gen Psychiatry. 2005 Sep;62(9):975-83 [PMID: 16143729]
  9. Brain Res. 1992 May 15;580(1-2):12-7 [PMID: 1504791]
  10. Schizophr Res. 2004 Dec 15;72(1):41-51 [PMID: 15531406]
  11. Schizophr Bull. 1999;25(2):233-55 [PMID: 10416729]
  12. Arch Gen Psychiatry. 1999 Sep;56(9):781-7 [PMID: 12884883]
  13. Schizophr Res. 2006 Oct;87(1-3):67-80 [PMID: 16844347]
  14. Behav Neurosci. 2010 Aug;124(4):532-40 [PMID: 20695652]
  15. Neurosci Res. 2006 Aug;55(4):383-8 [PMID: 16712995]
  16. Neurodegener Dis. 2010;7(1-3):148-52 [PMID: 20197695]
  17. Acta Psychiatr Scand. 1997 Jan;95(1):40-3 [PMID: 9051159]
  18. Neuropsychologia. 2010 Aug;48(10):2922-30 [PMID: 20540956]
  19. Neuropsychol Rev. 2009 Dec;19(4):478-89 [PMID: 19936933]
  20. Schizophr Bull. 2009 Sep;35(5):1022-9 [PMID: 18495643]
  21. Neurosci Biobehav Rev. 2008 Jul;32(5):1014-23 [PMID: 18471877]
  22. Nat Rev Drug Discov. 2012 Jun 22;11(7):560-79 [PMID: 22722532]
  23. Q J Exp Psychol B. 1986 Nov;38(4):365-95 [PMID: 3809580]
  24. Br J Psychiatry. 2009 Oct;195(4):286-93 [PMID: 19794194]
  25. Behav Brain Res. 1998 Sep;95(1):47-54 [PMID: 9754876]
  26. J Abnorm Psychol. 1989 Nov;98(4):367-80 [PMID: 2574202]
  27. Pharmacol Biochem Behav. 2013 May;106:117-23 [PMID: 23558085]
  28. Behav Brain Res. 2002 Apr 15;132(1):77-84 [PMID: 11853860]
  29. Behav Neurosci. 1996 Dec;110(6):1205-28 [PMID: 8986326]
  30. Hippocampus. 2010 Apr;20(4):481-91 [PMID: 19554566]
  31. Neurosci Biobehav Rev. 2004 Nov;28(7):699-709 [PMID: 15555679]
  32. J Alzheimers Dis. 2011;27(3):477-82 [PMID: 21860092]
  33. Hippocampus. 1999;9(2):118-36 [PMID: 10226773]
  34. Behav Brain Res. 1998 Jun;93(1-2):185-90 [PMID: 9659999]
  35. Nat Protoc. 2006;1(2):848-58 [PMID: 17406317]
  36. J Clin Psychiatry. 2003 Jun;64(6):663-7 [PMID: 12823080]
  37. Behav Brain Res. 1983 Feb;7(2):133-53 [PMID: 6830648]
  38. Contemp Top Lab Anim Sci. 2003 Mar;42(2):49-50 [PMID: 19757627]
  39. J Neurosci Methods. 1984 May;11(1):47-60 [PMID: 6471907]
  40. Behav Neurosci. 2002 Oct;116(5):851-9 [PMID: 12369805]
  41. Neuroimage. 2010 Feb 15;49(4):3373-84 [PMID: 19948225]
  42. Behav Brain Res. 2004 May 5;151(1-2):103-15 [PMID: 15084426]
  43. Physiol Behav. 1999 Dec 1-15;68(1-2):81-6 [PMID: 10627065]
  44. Psychiatry Res. 2007 Mar 30;150(2):111-21 [PMID: 17292970]
  45. Neurosci Lett. 2004 Aug 12;366(2):162-6 [PMID: 15276239]
  46. Nature. 1982 Jun 24;297(5868):681-3 [PMID: 7088155]
  47. J Exp Psychol Anim Behav Process. 2008 Jan;34(1):31-53 [PMID: 18248113]
  48. Schizophr Bull. 1987;13(2):261-76 [PMID: 3616518]
  49. Brain Res Brain Res Rev. 2001 Aug;36(1):60-90 [PMID: 11516773]
  50. Br J Psychiatry. 2008 Sep;193(3):203-9 [PMID: 18757977]
  51. Learn Mem. 2006 Nov-Dec;13(6):760-9 [PMID: 17142305]
  52. Biol Psychiatry. 2010 Feb 1;67(3):255-62 [PMID: 19897178]
  53. Conscious Cogn. 2006 Jun;15(2):295-309 [PMID: 16182569]
  54. Int J Dev Neurosci. 2003 May;21(3):159-67 [PMID: 12711354]
  55. Pharmacol Biochem Behav. 2005 Apr;80(4):591-6 [PMID: 15820528]
  56. PLoS One. 2009;4(5):e5464 [PMID: 19421325]
  57. Behav Brain Res. 2000 Jan;107(1-2):161-9 [PMID: 10628740]
  58. Neurosci Biobehav Rev. 2005 Jan;28(8):811-25 [PMID: 15642623]
  59. Hum Factors. 2001 Spring;43(1):147-58 [PMID: 11474760]
  60. Behav Brain Res. 2003 Dec 17;147(1-2):95-105 [PMID: 14659575]
  61. Schizophr Res. 2008 Apr;101(1-3):201-9 [PMID: 18276116]
  62. Behav Brain Res. 2011 Mar 17;218(1):87-93 [PMID: 21108974]
  63. Biol Psychiatry. 2005 Mar 15;57(6):688-91 [PMID: 15780858]
  64. Neuropsychologia. 1998 Nov;36(11):1217-38 [PMID: 9842767]
  65. Br J Psychiatry. 1995 May;166(5):654-9 [PMID: 7620753]
  66. Neurobiol Learn Mem. 1999 Mar;71(2):194-206 [PMID: 10082639]
  67. Physiol Behav. 2013 Aug 15;120:11-8 [PMID: 23831741]
  68. Behav Brain Res. 2011 Jun 20;220(1):215-29 [PMID: 21310186]
  69. Brain Cogn. 2001 Mar;45(2):143-54 [PMID: 11237363]
  70. Schizophr Res. 1991 Sep;5(2):123-34 [PMID: 1931805]
  71. Q J Exp Psychol B. 1991 Feb;43(1):83-103 [PMID: 2017576]

Word Cloud

Created with Highcharts 10.0.0spatialschizophreniaanimalvirtualtaskmemorydeficitmodelsgoalsessionlearningnavigationcognitivedesignedvFGNpatientshealthyaccuracysimilarassesscognitionresultsobtainedMorrisMWMfirstpsychoticepisoderememberhiddenpositionsRMtestDMPsequenceimpairedcontrolspointingshowedaffectedageresearchrealityOBJECTIVES:CognitiveconsideredcharacteristicfeaturedisorderdysfunctiondemonstratedHoweverpoorcomparabilitymethodsusedanimalshumansresponsiblelowpredictivevaliditycurrentorderabilitiescomparedataanalogwatermazeFourGoalsNavigationMETHODS:Twenty-ninesymptomsmatchedgroupvolunteersperformedrequiredfindfourenclosedarenaconsistedtwopartsReferencestablepositionDelayed-matching-to-placepresentedmodifiedworkingprotocolabilitythreeRESULTS:DatashowcomparedrecallbiasprobetrialsquadrantpreferencehighersensitivitytowardDirectsextestedsubjectsperformanceCONCLUSIONS:Despitelimitationsstudycorrespondwellpreviousstudiessupportdeclineindicatingusefulnesscomparativebased-WaterMazedisordersbehaviorenvironment

Similar Articles

Cited By