Runaway coevolution: adaptation to heritable and nonheritable environments.

Devin M Drown, Michael J Wade
Author Information
  1. Devin M Drown: Department of Biology, Indiana University, Bloomington, Indiana, 47405. devin@drown.com.

Abstract

Populations evolve in response to the external environment, whether abiotic (e.g., climate) or biotic (e.g., other conspecifics). We investigated how adaptation to biotic, heritable environments differs from adaptation to abiotic, nonheritable environments. We found that, for the same selection coefficients, the coadaptive process between genes and heritable environments is much faster than genetic adaptation to an abiotic nonheritable environment. The increased rate of adaptation results from the positive association generated by reciprocal selection between the heritable environment and the genes responding to it. These associations result in a runaway process of adaptive coevolution, even when the genes creating the heritable environment and genes responding to the heritable environment are unlinked. Although tightening the degree of linkage accelerates the coadaptive process, the acceleration caused by a comparable amount of inbreeding is greater, because inbreeding has a cumulative effect on reducing functional recombination over generations. Our results suggest that that adaptation to local abiotic environmental variation may result in the rapid diversification of populations and subsequent reproductive isolation not directly but rather via its effects on heritable environments and the genes responding to them.

Keywords

References

  1. J Evol Biol. 2008 Sep;21(5):1175-88 [PMID: 18547354]
  2. Front Microbiol. 2014 Feb 24;5:46 [PMID: 24605109]
  3. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721-5 [PMID: 16593036]
  4. J Biomed Biotechnol. 2010;2010:478732 [PMID: 20467476]
  5. Evolution. 2012 Sep;66(9):2674-84 [PMID: 22946795]
  6. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4655-60 [PMID: 12640144]
  7. Evolution. 1982 Jan;36(1):1-12 [PMID: 28581098]
  8. Evolution. 2013 Dec;67(12):3501-11 [PMID: 24299403]
  9. Philos Trans R Soc Lond B Biol Sci. 2009 Apr 27;364(1520):1075-86 [PMID: 19324612]
  10. Nature. 2007 Mar 29;446(7135):507-12 [PMID: 17392779]
  11. Evolution. 1997 Oct;51(5):1352-1362 [PMID: 28568644]
  12. Heredity (Edinb). 2014 Jan;112(1):61-9 [PMID: 23512010]
  13. Evolution. 2010 Sep;64(9):2558-74 [PMID: 20394666]
  14. Trends Ecol Evol. 1998 Feb 1;13(2):64-9 [PMID: 21238202]
  15. Am Nat. 2001 Sep;158(3):308-23 [PMID: 18707327]
  16. Genetics. 2008 Apr;178(4):2105-11 [PMID: 18430936]
  17. Evolution. 1981 Jan;35(1):124-138 [PMID: 28563447]
  18. Genetics. 1998 Sep;150(1):449-58 [PMID: 9725860]
  19. Evolution. 2009 Jul;63(7):1685-96 [PMID: 19245396]
  20. J Theor Biol. 1991 Dec 7;153(3):323-37 [PMID: 1798336]
  21. Science. 2002 Jan 11;295(5553):316-8 [PMID: 11786641]

Grants

  1. R01 GM084238/NIGMS NIH HHS
  2. R01GM084238/NIGMS NIH HHS

MeSH Term

Adaptation, Physiological
Biological Evolution
Environment
Gene-Environment Interaction
Genetic Linkage
Genetics, Population
Inbreeding
Models, Genetic
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0heritableenvironmentadaptationenvironmentsgenesabioticnonheritableprocessrespondingegbioticselectioncoadaptivegeneticresultsresultinbreedingeffectsPopulationsevolveresponseexternalwhetherclimateconspecificsinvestigateddiffersfoundcoefficientsmuchfasterincreasedratepositiveassociationgeneratedreciprocalassociationsrunawayadaptivecoevolutionevencreatingunlinkedAlthoughtighteningdegreelinkageacceleratesaccelerationcausedcomparableamountgreatercumulativeeffectreducingfunctionalrecombinationgenerationssuggestlocalenvironmentalvariationmayrapiddiversificationpopulationssubsequentreproductiveisolationdirectlyratherviaRunawaycoevolution:G×Egenotypeindirect

Similar Articles

Cited By (12)