Changes in morphology and function of adrenal cortex in mice fed a high-fat diet.

M M Swierczynska, I Mateska, M Peitzsch, S R Bornstein, T Chavakis, G Eisenhofer, V Lamounier-Zepter, S Eaton
Author Information
  1. M M Swierczynska: 1] Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany [2] Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
  2. I Mateska: 1] Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany [2] Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
  3. M Peitzsch: Department of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
  4. S R Bornstein: Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
  5. T Chavakis: Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
  6. G Eisenhofer: Department of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
  7. V Lamounier-Zepter: Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
  8. S Eaton: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Abstract

BACKGROUND/OBJECTIVES: Obesity is a major risk factor for the development of type 2 diabetes and other debilitating diseases. Obesity and diabetes are intimately linked with altered levels of adrenal steroids. Elevated levels of these hormones induce insulin resistance and cause cardiovascular diseases. The mechanisms underlying obesity-related alterations in adrenal steroids are still not well understood. Here, we investigated how diet-induced obesity affects the morphology and function of the mouse adrenal cortex.
METHODS: We fed animals either a high-fat diet (HFD) or a normal diet (60% kcal from fat or 10% kcal from fat, respectively) for 18 weeks. We then assessed various aspects of adrenal gland morphology and function, as well as basal plasma concentrations of steroid hormones and ACTH.
RESULTS: We show that adrenal glands of mice fed a HFD release more corticosterone and aldosterone, resulting in higher plasma levels. This increase is driven by adrenal cortical hyperplasia, and by increased expression of multiple genes involved in steroidogenesis. We demonstrate that diet-induced obesity elevates Sonic hedgehog signaling in Gli1-positive progenitors, which populate the adrenal capsule and give rise to the steroidogenic cells of the adrenal cortex. Feeding animals with a HFD depletes Gli1-positive progenitors, as the adrenal cortex expands.
CONCLUSIONS: This work provides insight into how diet-induced obesity changes the biology of the adrenal gland. The association of these changes with increased Shh signaling suggests possible therapeutic strategies for obesity-related steroid hormone dysfunction.

References

  1. Diabetologia. 1974 Oct;10(5):449-53 [PMID: 4375641]
  2. Development. 2013 Nov;140(22):4522-32 [PMID: 24131628]
  3. Horm Metab Res. 2008 Aug;40(8):515-7 [PMID: 18446685]
  4. Mol Cell Endocrinol. 2012 Mar 31;351(1):19-27 [PMID: 22020162]
  5. PLoS Biol. 2006 Jul;4(8):e232 [PMID: 16895439]
  6. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14211-6 [PMID: 14614137]
  7. Nat Chem Biol. 2012 Jan 08;8(2):211-20 [PMID: 22231273]
  8. Int J Obes (Lond). 2007 Oct;31(10):1605-16 [PMID: 17452987]
  9. Drug Metab Rev. 2007;39(2-3):371-88 [PMID: 17786627]
  10. PLoS Biol. 2013;11(3):e1001505 [PMID: 23554573]
  11. Nature. 2000 Apr 6;404(6778):635-43 [PMID: 10766250]
  12. Int J Obes (Lond). 2007 May;31(5):864-70 [PMID: 17211444]
  13. J Neuroendocrinol. 1992 Dec;4(6):765-71 [PMID: 21554665]
  14. Eur J Endocrinol. 2001 Mar;144(3):199-206 [PMID: 11248736]
  15. Horm Metab Res. 2006 Jul;38(7):437-41 [PMID: 16933178]
  16. Nutrients. 2013 Apr 12;5(4):1218-40 [PMID: 23584084]
  17. Metabolism. 1981 Jan;30(1):89-104 [PMID: 6780754]
  18. Comp Med. 2012 Oct;62(5):348-60 [PMID: 23114038]
  19. Obesity (Silver Spring). 2007 Apr;15(4):798-808 [PMID: 17426312]
  20. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1465-78 [PMID: 17911338]
  21. Exp Biol Med (Maywood). 2013 May;238(5):502-8 [PMID: 23856901]
  22. J Endocrinol Invest. 2002 Nov;25(10):893-8 [PMID: 12508952]
  23. Acta Physiol Scand. 1974 Oct;92(2):175-80 [PMID: 4371171]
  24. Exp Biol Med (Maywood). 2009 Aug;234(8):880-907 [PMID: 19491374]
  25. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21185-90 [PMID: 19955443]
  26. Trends Endocrinol Metab. 2008 Jul;19(5):175-80 [PMID: 18394919]
  27. Ann Intern Med. 2009 Jun 2;150(11):776-83 [PMID: 19487712]
  28. Endocr Res. 1998 Aug-Nov;24(3-4):587-90 [PMID: 9888542]
  29. Genesis. 2009 Sep;47(9):628-37 [PMID: 19536807]
  30. Endocrinology. 2000 Feb;141(2):560-3 [PMID: 10650936]
  31. Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E654-67 [PMID: 17077342]
  32. Endocr Rev. 2011 Feb;32(1):81-151 [PMID: 21051590]
  33. Diabetologia. 2008 Aug;51(8):1356-67 [PMID: 18563385]
  34. Nutr Metab (Lond). 2005 Feb 02;2(1):3 [PMID: 15689240]
  35. Nat Rev Cancer. 2004 Aug;4(8):579-91 [PMID: 15286738]
  36. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  37. Endocrinology. 2010 Mar;151(3):1119-28 [PMID: 20118198]
  38. Nat Rev Neurosci. 2010 Oct;11(10):710-8 [PMID: 20842176]
  39. Ann N Y Acad Sci. 2006 Nov;1083:111-28 [PMID: 17148736]
  40. Mol Cell Endocrinol. 2011 Apr 10;336(1-2):206-12 [PMID: 21094677]
  41. Horm Metab Res. 2008 Jul;40(7):435-41 [PMID: 18493881]
  42. Endocrinology. 2012 Apr;153(4):1764-73 [PMID: 22355066]
  43. J Clin Biochem Nutr. 2010 May;46(3):212-23 [PMID: 20490316]
  44. Br J Pharmacol. 2012 Aug;166(8):2417-29 [PMID: 22452651]
  45. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Jan 15;913-914:19-23 [PMID: 23266360]
  46. Development. 2009 Dec;136(24):4111-21 [PMID: 19906846]
  47. Bioinformatics. 2011 Apr 15;27(8):1179-80 [PMID: 21349861]
  48. Biochem Pharmacol. 1998 Jul 15;56(2):163-71 [PMID: 9698069]
  49. Endocrinology. 2013 Dec;154(12):4675-84 [PMID: 24064361]
  50. Curr Hypertens Rep. 2007 Dec;9(6):512-9 [PMID: 18367016]
  51. Int J Obes Relat Metab Disord. 2000 Jun;24 Suppl 2:S47-9 [PMID: 10997608]
  52. Diabetes. 1997 Jul;46(7):1235-8 [PMID: 9200662]

MeSH Term

Adrenal Cortex
Adrenal Cortex Hormones
Animals
Cells, Cultured
Corticosterone
Diet, High-Fat
Disease Models, Animal
Heat-Shock Proteins
Hedgehog Proteins
Kruppel-Like Transcription Factors
Mice
Mice, Inbred C57BL
Mice, Knockout
Obesity
Zinc Finger Protein GLI1

Chemicals

Adrenal Cortex Hormones
Gli1 protein, mouse
Heat-Shock Proteins
Hedgehog Proteins
Kruppel-Like Transcription Factors
Shh protein, mouse
Zinc Finger Protein GLI1
Corticosterone

Word Cloud

Created with Highcharts 10.0.0adrenalcortexlevelsdiet-inducedobesitymorphologyfunctionfeddietHFDObesitydiabetesdiseasessteroidshormonesobesity-relatedwellanimalshigh-fatkcalfatglandplasmasteroidmiceincreasedsignalingGli1-positiveprogenitorschangesBACKGROUND/OBJECTIVES:majorriskfactordevelopmenttype2debilitatingintimatelylinkedalteredElevatedinduceinsulinresistancecausecardiovascularmechanismsunderlyingalterationsstillunderstoodinvestigatedaffectsmouseMETHODS:eithernormal60%10%respectively18weeksassessedvariousaspectsbasalconcentrationsACTHRESULTS:showglandsreleasecorticosteronealdosteroneresultinghigherincreasedrivencorticalhyperplasiaexpressionmultiplegenesinvolvedsteroidogenesisdemonstrateelevatesSonichedgehogpopulatecapsulegiverisesteroidogeniccellsFeedingdepletesexpandsCONCLUSIONS:workprovidesinsightbiologyassociationShhsuggestspossibletherapeuticstrategieshormonedysfunctionChanges

Similar Articles

Cited By