Identification of endogenous reference genes for the analysis of microRNA expression in the hippocampus of the pilocarpine-induced model of mesial temporal lobe epilepsy.

Mykaella Andrade de Araújo, Thalita Ewellyn Batista Sales Marques, Jamile Taniele-Silva, Fernanda Maria de Araújo Souza, Tiago Gomes de Andrade, Norberto Garcia-Cairasco, Maria Luisa Paçó-Larson, Daniel Leite Góes Gitaí
Author Information
  1. Mykaella Andrade de Araújo: Department of Cell, Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil.
  2. Thalita Ewellyn Batista Sales Marques: Department of Cell, Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil.
  3. Jamile Taniele-Silva: Department of Cell, Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil.
  4. Fernanda Maria de Araújo Souza: Department of Cell, Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil.
  5. Tiago Gomes de Andrade: Campus Arapiraca, Federal University of Alagoas, Maceió, Alagoas, Brazil.
  6. Norberto Garcia-Cairasco: Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  7. Maria Luisa Paçó-Larson: Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  8. Daniel Leite Góes Gitaí: Department of Cell, Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil.

Abstract

Real-time quantitative RT-PCR (qPCR) is one of the most powerful techniques for analyzing miRNA expression because of its sensitivity and specificity. However, in this type of analysis, a suitable normalizer is required to ensure that gene expression is unaffected by the experimental condition. To the best of our knowledge, there are no reported studies that performed a detailed identification and validation of suitable reference genes for miRNA qPCR during the epileptogenic process. Here, using a pilocarpine (PILO) model of mesial temporal lobe epilepsy (MTLE), we investigated five potential reference genes, performing a stability expression analysis using geNorm and NormFinder softwares. As a validation strategy, we used each one of the candidate reference genes to measure PILO-induced changes in microRNA-146a levels, a gene whose expression pattern variation in the PILO injected model is known. Our results indicated U6SnRNA and SnoRNA as the most stable candidate reference genes. By geNorm analysis, the normalization factor should preferably contain at least two of the best candidate reference genes (snoRNA and U6SnRNA). In fact, when normalized using the best combination of reference genes, microRNA-146a transcripts were found to be significantly increased in chronic stage, which is consistent with the pattern reported in different models. Conversely, when reference genes were individually employed for normalization, we failed to detect up-regulation of the microRNA-146a gene in the hippocampus of epileptic rats. The data presented here support that the combination of snoRNA and U6SnRNA was the minimum necessary for an accurate normalization of gene expression at the different stages of epileptogenesis that we tested.

References

  1. BMC Genomics. 2007 Jun 12;8:166 [PMID: 17565689]
  2. N Engl J Med. 2001 Aug 2;345(5):311-8 [PMID: 11484687]
  3. Eur J Neurosci. 2003 Nov;18(10):2792-802 [PMID: 14656328]
  4. Neuroreport. 2009 Oct 28;20(16):1500-5 [PMID: 19801956]
  5. Mol Neurobiol. 2012 Aug;46(1):11-9 [PMID: 22302353]
  6. Nat Rev Genet. 2010 Sep;11(9):597-610 [PMID: 20661255]
  7. Brain Res. 2011 Apr 28;1387:134-40 [PMID: 21376023]
  8. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jun 3;51:159-65 [PMID: 24530830]
  9. BMC Genomics. 2010 Apr 08;11:230 [PMID: 20377889]
  10. J Mol Endocrinol. 2002 Aug;29(1):23-39 [PMID: 12200227]
  11. J Mol Endocrinol. 2000 Oct;25(2):169-93 [PMID: 11013345]
  12. Trends Cell Biol. 2007 Mar;17(3):118-26 [PMID: 17197185]
  13. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  14. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  15. Science. 2011 Feb 4;331(6017):550-3 [PMID: 21292970]
  16. J Neurosci Res. 2009 May 1;87(6):1435-48 [PMID: 19021292]
  17. Prog Brain Res. 2002;135:237-51 [PMID: 12143344]
  18. Nat Rev Mol Cell Biol. 2009 Feb;10(2):126-39 [PMID: 19165215]
  19. Nat Med. 2012 Jul;18(7):1087-94 [PMID: 22683779]
  20. PLoS One. 2012;7(9):e44789 [PMID: 23028621]
  21. Nat Rev Genet. 2012 Apr 18;13(5):358-69 [PMID: 22510765]
  22. J Neurosci. 2003 Mar 15;23(6):2218-27 [PMID: 12657681]
  23. J Neurosci. 2006 Oct 25;26(43):11083-110 [PMID: 17065450]
  24. Epilepsy Behav. 2009 Jan;14 Suppl 1:16-25 [PMID: 18835369]
  25. Trends Neurosci. 2009 Apr;32(4):199-206 [PMID: 19268374]
  26. Epilepsia. 2012 Jul;53(7):1215-24 [PMID: 22708826]
  27. Eur J Neurosci. 2003 Jan;17(2):271-9 [PMID: 12542663]
  28. PLoS One. 2012;7(2):e30832 [PMID: 22363497]
  29. PLoS One. 2013;8(1):e53464 [PMID: 23308228]
  30. Anal Biochem. 2009 Jan 1;384(1):1-10 [PMID: 18812161]
  31. J Biol Chem. 2010 Dec 10;285(50):38951-60 [PMID: 20937840]
  32. Wiley Interdiscip Rev RNA. 2012 Sep-Oct;3(5):601-16 [PMID: 22566380]
  33. J Mol Endocrinol. 2005 Jun;34(3):597-601 [PMID: 15956331]
  34. Nat Rev Genet. 2011 Feb;12(2):99-110 [PMID: 21245828]
  35. Brain. 2009 Dec;132(Pt 12):3342-52 [PMID: 19952055]
  36. Brain Res. 2011 Nov 18;1424:53-9 [PMID: 22019057]
  37. Biotechniques. 2000 Aug;29(2):332-7 [PMID: 10948434]
  38. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94 [PMID: 4110397]
  39. J Inorg Biochem. 2007 Sep;101(9):1265-9 [PMID: 17629564]
  40. Brain Res Mol Brain Res. 2005 Nov 18;141(1):95-112 [PMID: 16165245]
  41. Nat Rev Genet. 2007 Feb;8(2):93-103 [PMID: 17230196]
  42. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  43. J Anim Sci Biotechnol. 2012 Feb 28;3(1):4 [PMID: 22958414]
  44. J Toxicol Environ Health A. 2011;74(22-24):1460-8 [PMID: 22043907]
  45. Cell Death Dis. 2012 Mar 22;3:e287 [PMID: 22436728]
  46. Plant Physiol Biochem. 2013 May;66:20-5 [PMID: 23454294]
  47. BMC Neurosci. 2012 Sep 22;13:115 [PMID: 22998082]
  48. J Mol Neurosci. 2013 Jun;50(2):291-7 [PMID: 23315173]
  49. Exp Hematol. 2002 Jun;30(6):503-12 [PMID: 12063017]
  50. RNA. 2008 May;14(5):844-52 [PMID: 18375788]
  51. J Neurosci Res. 2011 Feb;89(2):212-21 [PMID: 21162128]
  52. Cell. 2004 Jan 23;116(2):281-97 [PMID: 14744438]
  53. Neurobiol Dis. 2014 Feb;62:508-20 [PMID: 24184920]
  54. Eur J Neurosci. 2010 Mar;31(6):1100-7 [PMID: 20214679]
  55. Am J Pathol. 2011 Nov;179(5):2519-32 [PMID: 21945804]
  56. PLoS One. 2013 Aug 23;8(8):e71892 [PMID: 24009668]

MeSH Term

Animals
Disease Models, Animal
Epilepsy, Temporal Lobe
Gene Expression Profiling
Hippocampus
Male
MicroRNAs
Pilocarpine
Rats
Rats, Wistar
Real-Time Polymerase Chain Reaction
Reference Standards
Reproducibility of Results

Chemicals

MicroRNAs
Pilocarpine