Mst3b promotes spinal cord neuronal regeneration by promoting growth cone branching out in spinal cord injury rats.

Yuqiang Zhang, Huaiqiang Hu, Ting Tian, Luping Zhang, Dongmei Zhao, Qianqian Wu, Yingwei Chang, Qingbo Wang, Shuai Zhou, Guoying Feng, Fei Huang
Author Information
  1. Yuqiang Zhang: Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Laishan, Shandong Province, 264003, China.

Abstract

Spinal cord injury is a severe clinical problem, and research searching activity molecular that can promote spinal cord injury repairing is very prevalent. Mst3b can promote repair of damaged peripheral nerves and the optic nerve, but has been rarely reported in spinal cord injury research. Through detecting its expression in different periods of injured spinal cord, we found that the expression of Mst3b was significantly upregulated in injured spinal cord neurons. Increasing Mst3b expression using adenovirus in vivo and in vitro promoted axonal regeneration of spinal cord neurons, which led to behavioral and electrophysiological improvement. Downregulation of Mst3b level had the adverse effects. Increasing Mst3b expression in PC12 cells resulted in an elevation of P42/44(MAPK) and LIMK/Cofilin activation. These results identified Mst3b as a powerful regulator for promoting spinal cord injury recovery through the P42/44(MAPK) and LIMK/Cofilin signaling pathways.

References

  1. Curr Biol. 2009 Jun 9;19(11):930-6 [PMID: 19409789]
  2. Neuron. 2012 Dec 20;76(6):1091-107 [PMID: 23259946]
  3. J Spinal Cord Med. 2012 Jul;35(4):194-5; author reply 195-6 [PMID: 22925742]
  4. Nat Neurosci. 2009 Nov;12(11):1407-14 [PMID: 19855390]
  5. J Cell Biol. 1984 Dec;99(6):2041-7 [PMID: 6389568]
  6. Neurochem Res. 2013 May;38(5):895-905 [PMID: 23462880]
  7. EMBO J. 1992 Dec;11(13):4815-24 [PMID: 1464311]
  8. Nature. 1980 Mar 20;284(5753):264-5 [PMID: 7360259]
  9. Nat Rev Mol Cell Biol. 2009 May;10(5):332-43 [PMID: 19373241]
  10. J Neurosci. 2006 Jul 12;26(28):7405-15 [PMID: 16837588]
  11. J Biol Chem. 2012 Dec 7;287(50):41720-31 [PMID: 23086941]
  12. Cell. 2012 Sep 14;150(6):1264-73 [PMID: 22980985]
  13. Exp Neurol. 1996 Jun;139(2):244-56 [PMID: 8654527]
  14. Curr Opin Neurobiol. 2000 Jun;10(3):381-91 [PMID: 10851172]
  15. Cell. 1994 Jun 17;77(6):841-52 [PMID: 7911739]
  16. Science. 2002 Feb 8;295(5557):1029-31 [PMID: 11834824]
  17. J Biol Chem. 2000 Jan 28;275(4):2513-9 [PMID: 10644707]
  18. Int J Biochem Cell Biol. 2007;39(6):1071-6 [PMID: 17188549]
  19. Nat Neurosci. 2004 Mar;7(3):269-77 [PMID: 14966523]
  20. Neuron. 2009 Oct 29;64(2):165-72 [PMID: 19874785]
  21. Annu Rev Neurosci. 2003;26:411-40 [PMID: 12626698]
  22. Proc Natl Acad Sci U S A. 2011 May 10;108(19):E99-107 [PMID: 21518886]
  23. Exp Neurol. 2008 Feb;209(2):294-301 [PMID: 17617407]
  24. Clin Neuropharmacol. 2001 Sep-Oct;24(5):254-64 [PMID: 11586110]
  25. Spinal Cord. 2007 Mar;45(3):190-205 [PMID: 17179973]
  26. Science. 1981 Nov 20;214(4523):931-3 [PMID: 6171034]
  27. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10444-10449 [PMID: 16801538]
  28. Nat Neurosci. 2007 May;10(5):598-607 [PMID: 17396120]
  29. J Neurosci. 2000 Jun 15;20(12):4615-26 [PMID: 10844031]
  30. Cell Signal. 2008 Jul;20(7):1237-47 [PMID: 18255267]
  31. Trends Neurosci. 2012 Mar;35(3):164-74 [PMID: 22154154]
  32. J Neurosci. 2011 Apr 20;31(16):5977-88 [PMID: 21508223]
  33. Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18320-5 [PMID: 17114295]
  34. Science. 2008 Nov 7;322(5903):963-6 [PMID: 18988856]
  35. Physiol Rev. 1996 Apr;76(2):319-70 [PMID: 8618960]
  36. Mol Biol Cell. 2004 Jul;15(7):3433-49 [PMID: 15090620]
  37. Neuron. 2004 Nov 18;44(4):609-21 [PMID: 15541310]
  38. Neuron. 1999 May;23(1):83-91 [PMID: 10402195]
  39. Exp Ther Med. 2013 Feb;5(2):384-388 [PMID: 23403404]
  40. J Neurosci. 2006 Sep 20;26(38):9713-21 [PMID: 16988042]
  41. J Reprod Immunol. 2011 Dec;92(1-2):45-53 [PMID: 21920610]
  42. Neuron. 2003 Apr 24;38(2):153-6 [PMID: 12718850]
  43. J Neurosci Methods. 2006 Nov 15;158(1):13-8 [PMID: 16787666]
  44. Mol Neurobiol. 2012 Oct;46(2):265-74 [PMID: 22806359]
  45. Nat Rev Neurosci. 2006 Aug;7(8):603-16 [PMID: 16858389]
  46. Nat Rev Neurosci. 2006 Aug;7(8):617-27 [PMID: 16858390]
  47. Brain Res. 2012 Apr 11;1448:137-43 [PMID: 22373651]
  48. J Neurobiol. 1994 Dec;25(12):1570-8 [PMID: 7861120]
  49. Neuron. 2002 Jul 3;35(1):65-76 [PMID: 12123609]
  50. Ann Med. 2005;37(8):556-67 [PMID: 16338758]
  51. Spinal Cord. 2011 Apr;49(4):493-501 [PMID: 21102572]
  52. Nature. 2002 Apr 11;416(6881):636-40 [PMID: 11948352]
  53. Exp Neurol. 2002 Sep;177(1):265-75 [PMID: 12429228]
  54. J Neurosci Methods. 2011 Sep 30;201(1):228-38 [PMID: 21855577]

MeSH Term

Animals
Cells, Cultured
Female
Growth Cones
Nerve Regeneration
Pregnancy
Protein Serine-Threonine Kinases
Rats
Rats, Sprague-Dawley
Spinal Cord Injuries

Chemicals

STK24 protein, human
Protein Serine-Threonine Kinases

Word Cloud

Created with Highcharts 10.0.0cordspinalMst3binjuryexpressionresearchcanpromoteinjuredneuronsIncreasingregenerationP42/44MAPKLIMK/CofilinpromotingSpinalsevereclinicalproblemsearchingactivitymolecularrepairingprevalentrepairdamagedperipheralnervesopticnerverarelyreporteddetectingdifferentperiodsfoundsignificantlyupregulatedusingadenovirusvivovitropromotedaxonalledbehavioralelectrophysiologicalimprovementDownregulationleveladverseeffectsPC12cellsresultedelevationactivationresultsidentifiedpowerfulregulatorrecoverysignalingpathwayspromotesneuronalgrowthconebranchingrats

Similar Articles

Cited By