Maximum-likelihood inference of population size contractions from microsatellite data.
Raphaël Leblois, Pierre Pudlo, Joseph Néron, François Bertaux, Champak Reddy Beeravolu, Renaud Vitalis, François Rousset
Author Information
Raphaël Leblois: INRA, UMR 1062 CBGP (INRA-IRD-CIRAD-Montpellier Supagro), Montpellier, France Muséum National d'Histoire Naturelle, CNRS, UMR OSEB, Paris, France Institut de Biologie Computationnelle, Montpellier, France raphael.leblois@supagro.inra.fr.
Pierre Pudlo: INRA, UMR 1062 CBGP (INRA-IRD-CIRAD-Montpellier Supagro), Montpellier, France Institut de Biologie Computationnelle, Montpellier, France Université Montpellier 2, CNRS, UMR I3M, Montpellier, France.
Joseph Néron: Muséum National d'Histoire Naturelle, CNRS, UMR OSEB, Paris, France.
François Bertaux: Muséum National d'Histoire Naturelle, CNRS, UMR OSEB, Paris, France INRIA Paris-Rocquencourt, BANG Team, Le Chesnay, France.
Champak Reddy Beeravolu: INRA, UMR 1062 CBGP (INRA-IRD-CIRAD-Montpellier Supagro), Montpellier, France.
Renaud Vitalis: INRA, UMR 1062 CBGP (INRA-IRD-CIRAD-Montpellier Supagro), Montpellier, France Institut de Biologie Computationnelle, Montpellier, France.
François Rousset: Institut de Biologie Computationnelle, Montpellier, France Université Montpellier 2, CNRS, UMR ISEM, Montpellier, France.
Understanding the demographic history of populations and species is a central issue in evolutionary biology and molecular ecology. In this work, we develop a maximum-likelihood method for the inference of past changes in population size from microsatellite allelic data. Our method is based on importance sampling of gene genealogies, extended for new mutation models, notably the generalized stepwise mutation model (GSM). Using simulations, we test its performance to detect and characterize past reductions in population size. First, we test the estimation precision and confidence intervals coverage properties under ideal conditions, then we compare the accuracy of the estimation with another available method (MSVAR) and we finally test its robustness to misspecification of the mutational model and population structure. We show that our method is very competitive compared with alternative ones. Moreover, our implementation of a GSM allows more accurate analysis of microsatellite data, as we show that the violations of a single step mutation assumption induce very high bias toward false contraction detection rates. However, our simulation tests also showed some limits, which most importantly are large computation times for strong disequilibrium scenarios and a strong influence of some form of unaccounted population structure. This inference method is available in the latest implementation of the MIGRAINE software package.