Diffusive public goods and coexistence of cooperators and cheaters on a 1D lattice.

István Scheuring
Author Information
  1. István Scheuring: MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/c H-1117, Budapest, Hungary.

Abstract

Many populations of cells cooperate through the production of extracellular materials. These materials (enzymes, siderophores) spread by diffusion and can be applied by both the cooperator and cheater (non-producer) cells. In this paper the problem of coexistence of cooperator and cheater cells is studied on a 1D lattice where cooperator cells produce a diffusive material which is beneficial to the individuals according to the local concentration of this public good. The reproduction success of a cell increases linearly with the benefit in the first model version and increases non-linearly (saturates) in the second version. Two types of update rules are considered; either the cooperative cell stops producing material before death (death-production-birth, DpB) or it produces the common material before it is selected to die (production-death-birth, pDB). The empty space is occupied by its neighbors according to their replication rates. By using analytical and numerical methods I have shown that coexistence of the cooperator and cheater cells is possible although atypical in the linear version of this 1D model if either DpB or pDB update rule is assumed. While coexistence is impossible in the non-linear model with pDB update rule, it is one of the typical behaviors in case of the non-linear model with DpB update rule.

References

  1. J Microbiol Methods. 2004 Dec;59(3):395-413 [PMID: 15488282]
  2. J Theor Biol. 2012 Apr 21;299:31-41 [PMID: 21419783]
  3. Q Rev Biol. 2004 Jun;79(2):135-60 [PMID: 15232949]
  4. Nature. 2010 Aug 26;466(7310):1057-62 [PMID: 20740005]
  5. J Theor Biol. 2008 Jun 21;252(4):694-710 [PMID: 18371985]
  6. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  7. Elife. 2013 Dec 17;2:e01169 [PMID: 24347543]
  8. J Theor Biol. 2004 Nov 7;231(1):97-106 [PMID: 15363932]
  9. J Theor Biol. 1991 Jul 21;151(2):145-54 [PMID: 1943139]
  10. PLoS One. 2013;8(3):e57947 [PMID: 23483950]
  11. J Theor Biol. 2009 Aug 7;259(3):589-600 [PMID: 19410582]
  12. Nat Rev Microbiol. 2006 Aug;4(8):597-607 [PMID: 16845430]
  13. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  14. Curr Biol. 2007 Aug 21;17(16):R661-72 [PMID: 17714660]
  15. J Theor Biol. 2012 Apr 21;299:9-20 [PMID: 21723299]
  16. Nat Commun. 2014 Mar 06;5:3409 [PMID: 24598979]
  17. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6736-9 [PMID: 17416674]
  18. PLoS One. 2013 May 17;8(5):e63304 [PMID: 23691017]
  19. J Theor Biol. 2008 Jul 21;253(2):221-7 [PMID: 18440558]
  20. Nature. 2004 Aug 26;430(7003):1024-7 [PMID: 15329720]
  21. Annu Rev Microbiol. 1996;50:727-51 [PMID: 8905097]
  22. Bull Math Biol. 2006 Nov;68(8):1923-44 [PMID: 17086490]
  23. J Theor Biol. 2007 Jun 21;246(4):681-94 [PMID: 17350049]
  24. Evol Appl. 2013 Dec;6(8):1146-59 [PMID: 24478797]
  25. J Theor Biol. 2006 Mar 21;239(2):195-202 [PMID: 16242728]
  26. J Theor Biol. 2006 Nov 7;243(1):86-97 [PMID: 16860343]
  27. Science. 1981 Mar 27;211(4489):1390-6 [PMID: 7466396]
  28. Biosystems. 2013 Aug;113(2):81-90 [PMID: 23727301]
  29. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12577-82 [PMID: 23858453]
  30. J Theor Biol. 2009 Dec 7;261(3):475-80 [PMID: 19703470]
  31. Science. 2006 Dec 8;314(5805):1560-3 [PMID: 17158317]
  32. PLoS Comput Biol. 2010 Mar 19;6(3):e1000716 [PMID: 20333237]
  33. Biotechnol Bioeng. 1998 Apr 5;58(1):101-16 [PMID: 10099266]
  34. BMC Evol Biol. 2013 Sep 22;13:204 [PMID: 24053177]
  35. Nature. 2009 May 14;459(7244):253-6 [PMID: 19349960]
  36. Trends Ecol Evol. 2001 Apr 1;16(4):178-183 [PMID: 11245940]
  37. Mol Syst Biol. 2011 Apr 12;7:483 [PMID: 21487402]
  38. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18921-6 [PMID: 20944065]
  39. Evolution. 2011 Apr;65(4):1140-8 [PMID: 21062277]
  40. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):876-81 [PMID: 17210916]

MeSH Term

Algorithms
Humans
Models, Biological
Models, Theoretical

Word Cloud

Created with Highcharts 10.0.0cellscooperatorcoexistencemodelupdatecheater1DmaterialversionDpBpDBrulematerialslatticeaccordingpubliccellincreaseseithernon-linearManypopulationscooperateproductionextracellularenzymessiderophoresspreaddiffusioncanappliednon-producerpaperproblemstudiedproducediffusivebeneficialindividualslocalconcentrationgoodreproductionsuccesslinearlybenefitfirstnon-linearlysaturatessecondTwotypesrulesconsideredcooperativestopsproducingdeathdeath-production-birthproducescommonselecteddieproduction-death-birthemptyspaceoccupiedneighborsreplicationratesusinganalyticalnumericalmethodsshownpossiblealthoughatypicallinearassumedimpossibleonetypicalbehaviorscaseDiffusivegoodscooperatorscheaters

Similar Articles

Cited By