R-Ras contributes to LTP and contextual discrimination.

M J Darcy, S-X Jin, L A Feig
Author Information
  1. M J Darcy: Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States.
  2. S-X Jin: Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States.
  3. L A Feig: Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States. Electronic address: larry.feig@tufts.edu.

Abstract

The ability to discriminate between closely related contexts is a specific form of hippocampal-dependent learning that may be impaired in certain neurodegenerative disorders such as Alzheimer's and Down Syndrome. However, signaling pathways regulating this form of learning are poorly understood. Previous studies have shown that the calcium-dependent exchange factor Ras-GRF1, an activator of Rac, Ras and R-Ras GTPases, is important for this form of learning and memory. Moreover, the ability to discriminate contexts was linked to the ability of Ras-GRF1 to promote high-frequency stimulation long-term potentiation (HFS-LTP) via the activation of p38 Map kinase. Here, we show that R-Ras is involved in this form of learning by using virally-delivered miRNAs targeting R-Ras into the CA1 region of the dorsal hippocampus and observing impaired contextual discrimination. Like the loss of GRF1, knockdown of R-Ras in the CA1 also impairs the induction of HFS-LTP and p38 Map kinase. Nevertheless, experiments indicate that this involvement of R-Ras in HFS-LTP that is required for contextual discrimination is independent of Ras-GRF1. Thus, R-Ras is a novel regulator of a form of hippocampal-dependent LTP as well as learning and memory that is affected in certain forms of neurodegenerative diseases.

Keywords

References

  1. J Biol Chem. 2001 Oct 12;276(41):38029-35 [PMID: 11500499]
  2. PLoS One. 2013 Sep 27;8(9):e76310 [PMID: 24086725]
  3. Cancer Res. 2008 Aug 1;68(15):6224-31 [PMID: 18676846]
  4. Curr Biol. 2006 Dec 5;16(23):2303-13 [PMID: 17141611]
  5. J Biol Chem. 2013 Jul 26;288(30):21703-13 [PMID: 23766509]
  6. Mol Biol Cell. 2012 Jul;23(14):2793-804 [PMID: 22593211]
  7. Neurosci Biobehav Rev. 2004 Apr;28(2):201-18 [PMID: 15172764]
  8. PLoS Genet. 2012;8(11):e1003042 [PMID: 23209424]
  9. Mol Neurobiol. 2005 Dec;32(3):217-22 [PMID: 16385138]
  10. J Biol Chem. 2014 Jun 6;289(23):16551-64 [PMID: 24755227]
  11. Exp Cell Res. 1997 Aug 25;235(1):117-23 [PMID: 9281359]
  12. J Cell Sci. 2001 Apr;114(Pt 7):1357-66 [PMID: 11257001]
  13. J Biol Chem. 1997 Jul 25;272(30):18602-7 [PMID: 9228027]
  14. J Neurosci. 2004 Dec 15;24(50):11473-80 [PMID: 15601954]
  15. Brain Res Mol Brain Res. 1997 Aug;48(1):140-4 [PMID: 9379834]
  16. Mol Biosyst. 2008 Mar;4(3):213-22 [PMID: 18437264]
  17. Mol Reprod Dev. 1995 Dec;42(4):468-76 [PMID: 8607978]
  18. Nature. 1992 Jul 23;358(6384):351-4 [PMID: 1379346]
  19. J Biol Chem. 2001 Dec 14;276(50):47248-56 [PMID: 11560935]
  20. Mol Cell Biol. 1997 Mar;17(3):1396-406 [PMID: 9032266]
  21. Behav Neurosci. 2001 Dec;115(6):1239-46 [PMID: 11770055]
  22. J Biol Chem. 2007 Jan 5;282(1):303-18 [PMID: 17107957]
  23. Neuropharmacology. 2001 Nov;41(6):791-800 [PMID: 11640934]
  24. Behav Neurosci. 1998 Aug;112(4):863-74 [PMID: 9733192]
  25. Science. 2004 Aug 6;305(5685):862-5 [PMID: 15297673]
  26. Curr Opin Cell Biol. 2000 Apr;12(2):157-65 [PMID: 10712923]
  27. Genes Cancer. 2011 Mar;2(3):306-19 [PMID: 21779501]
  28. Mol Biol Cell. 2006 Apr;17(4):2046-56 [PMID: 16467383]
  29. Blood. 2012 Feb 16;119(7):1693-701 [PMID: 22174156]
  30. J Neurosci. 2000 Sep 1;20(17):6551-60 [PMID: 10964960]
  31. J Biol Chem. 2010 Sep 3;285(36):28200-9 [PMID: 20610402]

Grants

  1. R01 MH083324/NIMH NIH HHS

MeSH Term

Animals
CA1 Region, Hippocampal
Discrimination, Psychological
Electric Stimulation
Freezing Reaction, Cataleptic
Gene Knockdown Techniques
Immunohistochemistry
Long-Term Synaptic Depression
Male
Mice
Mice, Inbred C57BL
MicroRNAs
NIH 3T3 Cells
Tissue Culture Techniques
p38 Mitogen-Activated Protein Kinases
ras Proteins
ras-GRF1

Chemicals

MicroRNAs
Rasgrf1 protein, mouse
ras-GRF1
p38 Mitogen-Activated Protein Kinases
Rras protein, mouse
ras Proteins

Word Cloud

Created with Highcharts 10.0.0R-RasformlearningRas-GRF1abilityHFS-LTPcontextualdiscriminationdiscriminatecontextshippocampal-dependentimpairedcertainneurodegenerativememoryp38MapkinaseCA1hippocampusLTPcloselyrelatedspecificmaydisordersAlzheimer'sSyndromeHoweversignalingpathwaysregulatingpoorlyunderstoodPreviousstudiesshowncalcium-dependentexchangefactoractivatorRacRasGTPasesimportantMoreoverlinkedpromotehigh-frequencystimulationlong-termpotentiationviaactivationshowinvolvedusingvirally-deliveredmiRNAstargetingregiondorsalobservingLikelossGRF1knockdownalsoimpairsinductionNeverthelessexperimentsindicateinvolvementrequiredindependentThusnovelregulatorwellaffectedformsdiseasescontributessynapticplasticity

Similar Articles

Cited By